Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert E. Rosenthal is active.

Publication


Featured researches published by Robert E. Rosenthal.


Journal of Cerebral Blood Flow and Metabolism | 1987

Cerebral Ischemia and Reperfusion: Prevention of Brain Mitochondrial Injury by Lidoflazine

Robert E. Rosenthal; Fozia Hamud; Gary Fiskum; P.Jacob Varghese; Steven Sharpe

Mitochondrial degradation is implicated in the irreversible cell damage that can occur during cerebral ischemia and reperfusion. In this study, the effects of 10 min of ventricular fibrillation and 100 min of spontaneous circulation on brain mitochondrial function was studied in dogs in the absence and presence of pretreatment with the Ca2+ antagonist lidoflazine. Twenty-three beagles were separated into four experimental groups: (i) nonischemic controls (ii) those undergoing 10-min ventricular fibrillation, (iii) those undergoing 10-min ventricular fibrillation pretreated with 1 mg/kg lidoflazine i.v., and (iv) those undergoing 10-min ventricular fibrillation followed by spontaneous circulation for 100 min. Brain mitochondria were isolated and tested for their ability to respire and accumulate calcium in a physiological test medium. There was a 35% decrease in the rate of phosphorylating respiration (ATP production) following 10 min of complete cerebral ischemia. Those animals pretreated with lidoflazine showed significantly less decline in phosphorylating respiration (16%) when compared with nontreated dogs. Resting and uncoupled respiration also declined following 10 min of fibrillatory arrest. One hundred minutes of spontaneous circulation following 10 min of ventricular fibrillation and 3 min of open-chest cardiac massage provided complete recovery of normal mitochondrial respiration. Energy-dependent Ca2+ accumulation by isolated brain mitochondria was unimpaired by 10 min of complete cerebral ischemia. However, by 100 min after resuscitation, there was a small, but significant rise in the capacity for mitochondrial Ca2+ sequestration when compared to either control or fibrillated groups. These findings indicate that: (a) 10 min of complete cerebral ischemia causes a substantial decline in the rate at which cortical brain mitochondria can synthesize ATP; (b) pretreatment with lidoflazine significantly protects the ability of brain mitochondria to synthesize ATP following 10-min ventricular fibrillation, (c) mitochondrial damage is completely reversible by 100 min following restoration of circulation, (d) mitochondrial Ca2+ uptake is relatively insensitive to the adverse effects of ischemia.


Journal of Cerebral Blood Flow and Metabolism | 2005

Normoxic Resuscitation after Cardiac Arrest Protects against Hippocampal Oxidative Stress, Metabolic Dysfunction, and Neuronal Death

Viktoria Vereczki; Erica Martin; Robert E. Rosenthal; Patrick R. Hof; Gloria E. Hoffman; Gary Fiskum

Resuscitation and prolonged ventilation using 100% oxygen after cardiac arrest is standard clinical practice despite evidence from animal models indicating that neurologic outcome is improved using normoxic compared with hyperoxic resuscitation. This study tested the hypothesis that normoxic ventilation during the first hour after cardiac arrest in dogs protects against prelethal oxidative stress to proteins, loss of the critical metabolic enzyme pyruvate dehydrogenase complex (PDHC), and minimizes subsequent neuronal death in the hippocampus. Anesthetized beagles underwent 10 mins ventricular fibrillation cardiac arrest, followed by defibrillation and ventilation with either 21% or 100% O2. At 1 h after resuscitation, the ventilator was adjusted to maintain normal blood gas levels in both groups. Brains were perfusion-fixed at 2 h reperfusion and used for immunohistochemical measurements of hippocampal nitrotyrosine, a product of protein oxidation, and the E1α subunit of PDHC. In hyperoxic dogs, PDHC immunostaining diminished by approximately 90% compared with sham-operated dogs, while staining in normoxic animals was not significantly different from nonischemic dogs. Protein nitration in the hippocampal neurons of hyperoxic animals was 2–3 times greater than either sham-operated or normoxic resuscitated animals at 2 h reperfusion. Stereologic quantification of neuronal death at 24 h reperfusion showed a 40% reduction using normoxic compared with hyperoxic resuscitation. These results indicate that postischemic hyperoxic ventilation promotes oxidative stress that exacerbates prelethal loss of pyruvate dehydrogenase and delayed hippocampal neuronal cell death. Moreover, these findings indicate the need for clinical trials comparing the effects of different ventilatory oxygen levels on neurologic outcome after cardiac arrest.


Stroke | 2006

Oximetry-Guided Reoxygenation Improves Neurological Outcome After Experimental Cardiac Arrest

Irina S. Balan; Gary Fiskum; Julie L. Hazelton; Cynthia Cotto-Cumba; Robert E. Rosenthal

Background and Purpose— Current guidelines suggest that cardiac arrest (CA) survivors should be ventilated with 100% O2 after resuscitation. Breathing 100% O2 may worsen neurological outcome after experimental CA. This study tested the hypothesis that graded reoxygenation, with oximetry guidance, can safely reduce FiO2 after resuscitation, avoiding hypoxia while promoting neurological recovery. Methods— Mature dogs underwent 10 minutes of CA and restoration of spontaneous circulation with100% O2. Animals were randomized to 1-hour additional ventilation on 100% FiO2 or to rapid lowering of arterial O2 saturation to <96% but >94% with pulse oximeter guidance. Animals were awakened at hour 23, and the neurological deficit score (0=normal; 100=brain-dead) was measured. Reanesthetized animals were perfusion-fixed and the brains removed for histopathology. Results— The neurological deficit score was significantly better in oximetry (O) dogs. O dogs appeared aware of their surroundings, whereas most hyperoxic (H) animals were stuporous (neurological deficit score=43.0±5.9 [O] versus 61.0±4.2 [H]; n=8, P<0.05). Stereological analysis revealed fewer injured CA1 neurons in O animals (cresyl violet: 35.5±4.3% [O] versus 60.5±3.3% [H]; P<0.05). There were also fewer fluoro–Jade B–stained degenerating CA1 neurons in O animals (3320±267 [O] versus 6633±356 [H] per 0.1 mm3; P<0.001). Conclusions— A clinically applicable protocol designed to reduce postresuscitative hyperoxia after CA results in significant neuroprotection. Clinical trials of controlled normoxia after CA/restoration of spontaneous circulation should strongly be considered.


Stroke | 1998

Normoxic Ventilation After Cardiac Arrest Reduces Oxidation of Brain Lipids and Improves Neurological Outcome

Yuanbin Liu; Robert E. Rosenthal; Yolanda Haywood; Milena Miljkovic-Lolic; Jack Y. Vanderhoek; Gary Fiskum

BACKGROUND AND PURPOSE Increasing evidence that oxidative stress contributes to delayed neuronal death after global cerebral ischemia has led to reconsideration of the prolonged use of 100% ventilatory O2 following resuscitation from cardiac arrest. This study determined the temporal course of oxidation of brain fatty acyl groups in a clinically relevant canine model of cardiac arrest and resuscitation and tested the hypothesis that postischemic ventilation with 21% inspired O2, rather than 100% O2, results in reduced levels of oxidized brain lipids and decreased neurological impairment. METHODS Neurological deficit scoring and high performance liquid chromatography measurement of fatty acyl lipid oxidation were used in an established canine model using 10 minutes of cardiac arrest followed by resuscitation with different ventilatory oxygenation protocols and restoration of spontaneous circulation for 30 minutes to 24 hours. RESULTS Significant increases in frontal cortex lipid oxidation occurred after 10 minutes of cardiac arrest alone with no reperfusion and after reperfusion for 30 minutes, 2 hours, and 24 hours (relative total 235-nm absorbing peak areas=7.1+/-0.7 SE, 17.3+/-2.7, 14.2+/-3.2, 16.1+/-1.0, and 14.0+/-0.8, respectively; n=4, P<0.05). The predominant oxidized lipids were identified by gas chromatography/mass spectrometry as 13- and 9-hydroxyoctadecadienoic acids (13- and 9-HODE). Animals ventilated on 21% to 30% O2 versus 100% O2 for the first hour after resuscitation exhibited significantly lower levels of total and specific oxidized lipids in the frontal cortex (1.7+/-0.1 versus 3.12+/-0.78 microg 13-HODE/g wet wt cortex., n=4 to 6, P<0.05) and lower neurological deficit scores (45.1+/-3.6 versus 58.3+/-3.8, n=9, P<0.05). CONCLUSIONS With a clinically relevant canine model of 10 minutes of cardiac arrest, resuscitation with 21% versus 100% inspired O2 resulted in lower levels of oxidized brain lipids and improved neurological outcome measured after 24 hours of reperfusion. This study casts further doubt on the appropriateness of present guidelines that recommend the indiscriminate use of 100% ventilatory O2 for undefined periods during and after resuscitation from cardiac arrest.


Annals of the New York Academy of Sciences | 2006

Neuroprotective Antioxidants from Marijuanaa

A. J. Hampson; Maurizio Grimaldi; M. Lolic; D. Wink; Robert E. Rosenthal; Julius Axelrod

Abstract: Cannabidiol and other cannabinoids were examined as neuroprotectants in rat cortical neuron cultures exposed to toxic levels of the neurotransmitter, glutamate. The psychotropic cannabinoid receptor agonist Δ9‐tetrahydrocannabinol (THC) and cannabidiol, (a non‐psychoactive constituent of marijuana), both reduced NMDA, AMPA and kainate receptor mediated neurotoxicities. Neuroprotection was not affected by cannabinoid receptor antagonist, indicating a (cannabinoid) receptor‐independent mechanism of action. Glutamate toxicity can be reduced by antioxidants. Using cyclic voltametry and a fenton reaction based system, it was demonstrated that Cannabidiol, THC and other cannabinoids are potent antioxidants. As evidence that cannabinoids can act as an antioxidants in neuronal cultures, cannabidiol was demonstrated to reduce hydroperoxide toxicity in neurons. In a head to head trial of the abilities of various antioxidants to prevent glutamate toxicity, cannabidiol was superior to both a‐tocopherol and ascorbate in protective capacity. Recent preliminary studies in a rat model of focal cerebral ischemia suggest that cannabidiol may be at least as effective in vivo as seen in these in vitro studies.


Stroke | 2007

Hyperoxic Reperfusion After Global Ischemia Decreases Hippocampal Energy Metabolism

Erica M. Richards; Gary Fiskum; Robert E. Rosenthal; Irene B. Hopkins; Mary C. McKenna

Background and Purpose— Previous reports indicate that compared with normoxia, 100% ventilatory O2 during early reperfusion after global cerebral ischemia decreases hippocampal pyruvate dehydrogenase activity and increases neuronal death. However, current standards of care after cardiac arrest encourage the use of 100% O2 during resuscitation and for an undefined period thereafter. Using a clinically relevant canine cardiac arrest model, in this study we tested the hypothesis that hyperoxic reperfusion decreases hippocampal glucose metabolism and glutamate synthesis. Methods— After 10 minutes of cardiac arrest, animals were resuscitated and ventilated for 1 hour with 100% O2 (hyperoxic) or 21% to 30% O2 (normoxic). At 30 minutes reperfusion, [1-13C]glucose was infused, and at 2 hours, brains were rapidly removed and frozen. Extracted metabolites were analyzed by 13C nuclear magnetic resonance spectroscopy. Results— Compared with nonischemic controls, the hippocampi from hyperoxic animals had elevated levels of unmetabolized 13C-glucose and decreased incorporation of 13C into all isotope isomers of glutamate. These findings indicate impaired neuronal metabolism via the pyruvate dehydrogenase pathway for carbon entry into the tricarboxylic acid cycle and impaired glucose metabolism via the astrocytic pyruvate carboxylase pathway. No differences were observed in the cortex, indicating that the hippocampus is more vulnerable to metabolic changes induced by hyperoxic reperfusion. Conclusions— These results represent the first direct evidence that hyperoxia after cardiac arrest impairs hippocampal oxidative energy metabolism in the brain and challenge the rationale for using excessively high resuscitative ventilatory O2.


Journal of Bioenergetics and Biomembranes | 2004

Protection against ischemic brain injury by inhibition of mitochondrial oxidative stress.

Gary Fiskum; Robert E. Rosenthal; Viktoria Vereczki; Erica Martin; Gloria E. Hoffman; Christos Chinopoulos; Alicia J. Kowaltowski

Mitochondria are both targets and sources of oxidative stress. This dual relationship is particularly evident in experimental paradigms modeling ischemic brain injury. One mitochondrial metabolic enzyme that is particularly sensitive to oxidative inactivation is pyruvate dehydrogenase. This reaction is extremely important in the adult CNS that relies very heavily on carbohydrate metabolism, as it represents the sole bridge between anaerobic and aerobic metabolism. Oxidative injury to this enzyme and to other metabolic enzymes proximal to the electron transport chain may be responsible for the oxidized shift in cellular redox state that is observed during approximately the first hour of cerebral reperfusion. In addition to impairing cerebral energy metabolism, oxidative stress is a potent activator of apoptosis. The mechanisms responsible for this activation are poorly understood but likely involve the expression of p53 and possibly direct effects of reactive oxygen species on mitochondrial membrane proteins and lipids. Mitochondria also normally generate reactive oxygen species and contribute significantly to the elevated net production of these destructive agents during reperfusion. Approaches to inhibiting pathologic mitochondrial generation of reactive oxygen species include mild uncoupling, pharmacologic inhibition of the membrane permeability transition, and simply lowering the concentration of inspired oxygen. Antideath mitochondrial proteins of the Bcl-2 family also confer cellular resistance to oxidative stress, paradoxically through stimulation of mitochondrial free radical generation and secondary upregulation of antioxidant gene expression.


Stroke | 1992

Prevention of postischemic canine neurological injury through potentiation of brain energy metabolism by acetyl-L-carnitine.

Robert E. Rosenthal; R. Williams; Yolanda E. Bogaert; P R Getson; Gary Fiskum

Background and Purpose: Mechanisms of ischemia/reperfusion brain injury include altered patterns of energy metabolism that may be amenable to pharmacological manipulation. The purpose of this study was to test the effectiveness of postischemic acetyl-L-carnitine administration on potentiation of metabolic recovery and prevention of neurological morbidity in a clinically relevant model of complete, global cerebral ischemia and reperfusion. Methods: Neurological deficit scoring as well as spectrophotometric and fluorescent assays of frontal cortex lactate and pyruvate levels were used in a canine model employing 10 minutes of cardiac arrest followed by restoration of spontaneous circulation for 2 or 24 hours. Results: Dogs treated with acetyl-L-carnitine exhibited significantly lower neurological deficit scores (p=0.0037) and more normal cerebral cortex lactate/pyruvate ratios than did vehicle-treated control animals. Conclusions: Postischemic administration of acetyl-L-carnitine potentiates normalization of brain energy metabolites and substantially improves neurological outcome in a clinically relevant model of global cerebral ischemia and reperfusion.


Journal of Neuroscience Research | 2005

Pyruvate dehydrogenase complex: metabolic link to ischemic brain injury and target of oxidative stress.

Erica Martin; Robert E. Rosenthal; Gary Fiskum

The mammalian pyruvate dehydrogenase complex (PDHC) is a mitochondrial matrix enzyme complex (greater than 7 million Daltons) that catalyzes the oxidative decarboxylation of pyruvate to form acetyl CoA, nicotinamide adenine dinucleotide (the reduced form, NADH), and CO2. This reaction constitutes the bridge between anaerobic and aerobic cerebral energy metabolism. PDHC enzyme activity and immunoreactivity are lost in selectively vulnerable neurons after cerebral ischemia and reperfusion. Evidence from experiments carried out in vitro suggests that reperfusion‐dependent loss of activity is caused by oxidative protein modifications. Impaired enzyme activity may explain the reduced cerebral glucose and oxygen consumption that occurs after cerebral ischemia. This hypothesis is supported by the hyperoxidation of mitochondrial electron transport chain components and NAD(H) that occurs during reperfusion, indicating that NADH production, rather than utilization, is rate limiting. Additional support comes from the findings that immediate postischemic administration of acetyl‐L‐carnitine both reduces brain lactate/pyruvate ratios and improves neurologic outcome after cardiac arrest in animals. As acetyl‐L‐carnitine is converted to acetyl CoA, the product of the PDHC reaction, it follows that impaired production of NADH is due to reduced activity of either PDHC or one or more steps in glycolysis. Impaired cerebral energy metabolism and PDHC activity are associated also with neurodegenerative disorders including Alzheimers disease and Wernicke‐Korsakoff syndrome, suggesting that this enzyme is an important link in the pathophysiology of both acute brain injury and chronic neurodegeneration.


Free Radical Biology and Medicine | 1994

Postischemic inhibition of cerebral cortex pyruvate dehydrogenase

Yolanda E. Bogaert; Robert E. Rosenthal; Gary Fiskum

Postischemic, mitochondrial respiratory impairment can contribute to prolonged intracellular lactic acidosis, secondary tissue deenergization, and neuronal cell death. Specifically, reperfusion-dependent inhibition of pyruvate dehydrogenase (PDH) may determine the degree to which glucose is metabolized aerobically vs. anaerobically. In this study, the maximal activities of pyruvate and lactate dehydrogenase (LDH) from homogenates of canine frontal cortex were measured following 10 min of cardiac arrest and systemic reperfusion from 30 min to 24 h. Although no change in PDH activity occurred following ischemia alone, a 72% reduction in activity was observed following only 30 min of reperfusion and a 65% inhibition persisted following 24 h of reperfusion. In contrast, no significant alteration in LDH activity was observed in any experimental group relative to nonarrested control animals. A trend toward reversal of PDH inhibition was observed in tissue from animals treated following ischemia with acetyl-L-carnitine, a drug previously reported to inhibit brain protein oxidation, and lower postischemic cortical lactate levels and improve neurological outcome. In vitro experiments indicate that PDH is more sensitive than LDH to enzyme inactivation by oxygen dependent free radical-mediated protein oxidation. This form of inhibition is potentiated by either elevated Ca2+ concentrations or substrate/cofactor depletion. These results suggest that site-specific protein oxidation may be involved in reperfusion-dependent inhibition of brain PDH activity.

Collaboration


Dive into the Robert E. Rosenthal's collaboration.

Top Co-Authors

Avatar

Gary Fiskum

University of Maryland

View shared research outputs
Top Co-Authors

Avatar

Robert Shesser

George Washington University

View shared research outputs
Top Co-Authors

Avatar

Mark Smith

MedStar Washington Hospital Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey P. Smith

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Prudence P Kline

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Yolanda E. Bogaert

George Washington University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Silbergleit

George Washington University

View shared research outputs
Top Co-Authors

Avatar

Ron M. Walls

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge