Robert Eves
Queen's University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert Eves.
Molecular and Cellular Biology | 2009
Utpal K. Mukhopadhyay; Robert Eves; Lilly Jia; Patrick Mooney; Alan S. Mak
ABSTRACT The tumor-suppressive role of p53 at the level of tumor initiation is well documented. It has also been shown previously that p53 acts against tumor progression/metastasis. However, its role in modulating cell migration and invasion leading to metastasis is poorly understood. In this study, using vascular smooth muscle cells and NIH 3T3 fibroblast cells, we have shown that p53 potently suppresses Src-induced podosome/rosette formation, extracellular matrix digestion, cell migration, and invasion. The overexpression of exogenous wild-type p53 or the activation of the endogenous p53 function suppresses, while the short hairpin RNA-mediated knockdown of p53 expression or the blocking of its function exacerbates, Src-induced migratory and invasive phenotypes. We have also found that p53 expression and function are downregulated in cells stably transformed with constitutively active Src that exhibit aggressive invasive properties. Lastly, p53 upregulates the expression of caldesmon, an actin-binding protein that has been shown to be an inhibitor of podosome/invadopodium formation. The ability of p53 to suppress Src phenotypes in transformed cells was largely abolished by knocking down caldesmon. This study reports a novel molecular mechanism (caldesmon), as well as a structural basis (podosomes/rosettes), to show how p53 can act as an anti-motility/invasion/metastasis agent.
Journal of Cell Science | 2006
Robert Eves; Bradley A. Webb; Shutang Zhou; Alan S. Mak
Podosomes are highly dynamic actin-based structures commonly found in motile and invasive cells such as macrophages, osteoclasts and vascular smooth muscle cells. Here, we have investigated the role of caldesmon, an actin-binding protein, in the formation of podosomes in aortic smooth muscle A7r5 cells induced by the phorbol ester PDBu. We found that endogenous low molecular weight caldesmon (l-caldesmon), which was normally localised to actin-stress fibres and membrane ruffles, was recruited to the actin cores of PDBu-induced podosomes. Overexpression of l-caldesmon in A7r5 cells caused dissociation of actin-stress fibres and disruption of focal adhesion complexes, and significantly reduced the ability of PDBu to induce podosome formation. By contrast, siRNA interference of caldesmon expression enhanced PDBu-induced formation of podosomes. The N-terminal fragment of l-caldesmon, CaD40, which contains the myosin-binding site, did not label stress fibres and was not translocated to PDBu-induced podosomes. Cad39, the C-terminal fragment housing the binding sites for actin, tropomyosin and calmodulin, was localised to stress fibres and was translocated to podosomes induced by PDBu. The caldesmon mutant, CadCamAB, which does not interact with Ca2+/calmodulin, was not recruited to PDBu-induced podosomes. These results show that (1) l-caldesmon is an integral part of the actin-rich core of the podosome; (2) overexpression of l-caldesmon suppresses podosome formation, whereas siRNA knock-down of l-caldesmon facilitates its formation; and (3) the actin-binding and calmodulin-binding sites on l-caldesmon are essential for the translocation of l-caldesmon to the podosomes. In summary, this data suggests that caldesmon may play a role in the regulation of the dynamics of podosome assembly and that Ca2+/calmodulin may be part of a regulatory mechanism in podosome formation.
Molecular and Cellular Biology | 2010
Utpal K. Mukhopadhyay; Patrick Mooney; Lilly Jia; Robert Eves; Leda Raptis; Alan S. Mak
ABSTRACT We have recently shown that Src induces the formation of podosomes and cell invasion by suppressing endogenous p53, while enhanced p53 strongly represses the Src-induced invasive phenotype. However, the mechanism by which Src and p53 play antagonistic roles in cell invasion is unknown. Here we show that the Stat3 oncogene is a required downstream effector of Src in inducing podosome structures and related invasive phenotypes. Stat3 promotes Src phenotypes through the suppression of p53 and the p53-inducible protein caldesmon, a known podosome antagonist. In contrast, enhanced p53 attenuates Stat3 function and Src-induced podosome formation by upregulating the tumor suppressor PTEN. PTEN, through the inactivation of Src/Stat3 function, also stabilizes the podosome-antagonizing p53/caldesmon axis, thereby further enhancing the anti-invasive potential of the cell. Furthermore, the protein phosphatase activity of PTEN plays a major role in the negative regulation of the Src/Stat3 pathway and represses podosome formation. Our data suggest that cellular invasiveness is dependent on the balance between two opposing forces: the proinvasive oncogenes Src-Stat3 and the anti-invasive tumor suppressors p53-PTEN.
Cell Cycle | 2010
Jacquelyne S. Poon; Robert Eves; Alan S. Mak
We have recently identified mutually antagonizing signaling pathways that regulate podosome formation and invasive phenotypes in Src-transformed vascular smooth muscle cells and fibroblasts. Cross-talks between the anti-invasion p53-PTEN, and the pro-invasion Src-Stat3 and Src-PI3K-Akt pathways serve as a check and balance that dictates the outcome of either an invasive or non-invasive phenotype. Using a retrovirus vector encoding PTEN phosphatase mutants that retain either protein- or lipid-phosphatase activity on a Src(Y527F)background, we report here that both lipid- and protein-phosphatase activities of PTEN contribute to the suppression of Src-induced podosome formation and associated invasive phenotypes in rat aortic smooth muscle cells. This data suggests that p53 up-regulation of PTEN inhibits cell invasion via a two-prong mechanism: inactivating podosome agonists by its protein-phosphatase activity on the one hand, and antagonising the PI3K-Akt pathway by its lipid-phosphatase activity on the other.
Cancers | 2015
Robert Eves; Robyn Oldham; Lilly Jia; Alan S. Mak
Mesenchymal cells employ actin-based membrane protrusions called podosomes and invadopodia for cross-tissue migration during normal human development such as embryogenesis and angiogenesis, and in diseases such as atherosclerosis plaque formation and cancer cell metastasis. The Akt isoforms, downstream effectors of phosphatidylinositol 3 kinase (PI3K), play crucial roles in cell migration and invasion, but their involvement in podosome formation and cell invasion is not known. In this study, we have used Akt1 and/or Akt2 knockout mouse embryonic fibroblasts and Akt3-targeted shRNA to determine the roles of the three Akt isoforms in Src and phorbol ester-induced podosome formation, and extracellular matrix (ECM) digestion. We found that deletion or knockdown of Akt1 significantly reduces Src-induced formation of podosomes and rosettes, and ECM digestion, while suppression of Akt2 has little effect. In contrast, Akt3 knockdown by shRNA increases Src-induced podosome/rosette formation and ECM invasion. These data suggest that Akt1 promotes, while Akt3 suppresses, podosome formation induced by Src, and Akt2 appears to play an insignificant role. Interestingly, both Akt1 and Akt3 suppress, while Akt2 enhances, phorbol ester-induced podosome formation. These data show that Akt1, Akt2 and Akt3 play different roles in podosome formation and ECM invasion induced by Src or phorbol ester, thus underscoring the importance of cell context in the roles of Akt isoforms in cell invasion.
PLOS ONE | 2014
Laura J. Payne; Robert Eves; Lilly Jia; Alan S. Mak
The tumor suppressor, p53, negatively regulates cell migration and invasion in addition to its role in apoptosis, cell cycle regulation and senescence. Here, we study the roles of p53 in PDGF-induced circular dorsal ruffle (CDR) formation in rat aortic smooth muscle (RASM) cells. In primary and immortalized RASM cells, up-regulation of p53 expression or increase in activity with doxorubicin inhibits CDR formation. In contrast, shRNA-knockdown of p53 or inhibition of its activity with pifithrin α promotes CDR formation. p53 acts by up-regulating PTEN expression, which antagonizes Rac and Cdc42 activation. Both lipid and protein phosphatase activities of PTEN are required for maximal suppression of CDR, but the lipid activity clearly plays the dominant role. N-WASP, the downstream effector of Cdc42, is the major positive contributor to CDR formation in RASM, and is an indirect target of p53. The Rac effector, WAVE2, appears to also play a minor role, while WAVE1 has no significant effect in CDR formation. In sum, we propose that p53 suppresses PDGF-induced CDR formation in RASM cells by upregulating PTEN leading mainly to the inhibition of the Cdc42-N-WASP pathway.
PLOS ONE | 2017
Erich J. H. Nelson; Jeremy Holden; Robert Eves; Bruce Tufts
Largemouth (LMB: Micropterus salmoides) and Smallmouth Bass (SMB: Micropterus dolomieu) are important species in the recreational fisheries of the Laurentian Great Lakes. The invasion of the Round Goby (Neogobius melanostomus) into these lakes has changed several facets of black bass biology, but there is still much to learn about the relationship between these species. Previous dietary analyses have shown Round Goby to be important prey for bass, but have been limited by low visual identification rates of dissected stomach items. Within the present study, DNA barcoding and stable isotope analysis improve prey identification and provide a more quantitative dietary analysis of adult black bass in Lake Ontario, comparing the importance of Round Goby as prey between these two species. Eighty-four LMB (406mm fork length ±4mm SEM) and two hundred sixty-four SMB (422mm ±2mm) obtained as tournament mortalities had prey identified using DNA-based methods. Round Goby was the most prevalent prey species for both predators. The diet of LMB was three times more diverse than that of SMB, which almost entirely consists of Round Goby. Our results provide further support that recent increases in the size of Lake Ontario bass are a result of Round Goby consumption, and that the effects of this dietary shift on body condition are greater for SMB. Techniques developed in this study include reverse-oriented dual priming oligonucleotides used as blocking primers for predator DNA, and an automated design approach of restriction fragment length polymorphism tests for identifying prey DNA barcodes.
PLOS ONE | 2017
Richard Y. Cao; Robert Eves; Lilly Jia; Colin D. Funk; Zongchao Jia; Alan S. Mak; Andreas Zirlik
In vitro and in vivo evidence has indicated that the tumor suppressor, p53, may play a significant role in the regulation of atherosclerotic plaque formation. In vivo studies using global knockout mice models, however, have generated inconclusive results that do not address the roles of p53 in various cell types involved in atherosclerosis. In this study, we have specifically ablated p53 in vascular smooth muscle cells (VSMC) in the ApoE-/- mouse model to investigate the roles of p53 in VSMC in atherosclerotic plaque formation and stability. We found that p53 deficiency in VSMC alone did not affect the overall size of atherosclerotic lesions. However, there was a significant increase in the number of p53-/- VSMC in the fibrous caps of atherosclerotic plaques in the early stages of plaque development. Loss of p53 results in migration of VSMC at a faster rate using wound healing assays and augments PDGF-induced formation of circular dorsal ruffles (CDR), known to be involved in cell migration and internalization of surface receptors. Furthermore, aortic VSMC from ApoE-/- /p53-/- mice produce significantly more podosomes and are more invasive. We conclude that p53-/- VSMC are enriched in the fibrous caps of lesions at early stages of plaque formation, which is caused in part by an increase in VSMC migration and invasion as shown by p53-/- VSMC in culture having significantly higher rates of migration and producing more CDRs and invasive podosomes.
Archives of Biochemistry and Biophysics | 2006
Bradley A. Webb; Shutang Zhou; Robert Eves; Linda Shen; Lilly Jia; Alan S. Mak
American Journal of Physiology-cell Physiology | 2005
Bradley A. Webb; Robert Eves; Scott W. Crawley; Shutang Zhou; Graham P. Côté; Alan S. Mak