Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert F. Dougherty is active.

Publication


Featured researches published by Robert F. Dougherty.


Cerebral Cortex | 2009

Resting-State Functional Connectivity Reflects Structural Connectivity in the Default Mode Network

Michael D. Greicius; Kaustubh Supekar; Vinod Menon; Robert F. Dougherty

Resting-state functional connectivity magnetic resonance imaging (fcMRI) studies constitute a growing proportion of functional brain imaging publications. This approach detects temporal correlations in spontaneous blood oxygen level-dependent (BOLD) signal oscillations while subjects rest quietly in the scanner. Although distinct resting-state networks related to vision, language, executive processing, and other sensory and cognitive domains have been identified, considerable skepticism remains as to whether resting-state functional connectivity maps reflect neural connectivity or simply track BOLD signal correlations driven by nonneural artifact. Here we combine diffusion tensor imaging (DTI) tractography with resting-state fcMRI to test the hypothesis that resting-state functional connectivity reflects structural connectivity. These 2 modalities were used to investigate connectivity within the default mode network, a set of brain regions--including medial prefrontal cortex (MPFC), medial temporal lobes (MTLs), and posterior cingulate cortex (PCC)/retropslenial cortex (RSC)--implicated in episodic memory processing. Using seed regions from the functional connectivity maps, the DTI analysis revealed robust structural connections between the MTLs and the retrosplenial cortex whereas tracts from the MPFC contacted the PCC (just rostral to the RSC). The results demonstrate that resting-state functional connectivity reflects structural connectivity and that combining modalities can enrich our understanding of these canonical brain networks.


Journal of Vision | 2003

Visual field representations and locations of visual areas V1/2/3 in human visual cortex

Robert F. Dougherty; Volker M. Koch; Alyssa A. Brewer; Bernd Fischer; Jan Modersitzki; Brian A. Wandell

The position, surface area and visual field representation of human visual areas V1, V2 and V3 were measured using fMRI in 7 subjects (14 hemispheres). Cortical visual field maps of the central 12 deg were measured using rotating wedge and expanding ring stimuli. The boundaries between areas were identified using an automated procedure to fit an atlas of the expected visual field map to the data. All position and surface area measurements were made along the boundary between white matter and gray matter. The representation of the central 2 deg of visual field in areas V1, V2, V3 and hV4 spans about 2100 mm2 and is centered on the lateral-ventral aspect of the occipital lobes at Talairach coordinates -29, -78, -11 and 25, -80, -9. The mean area between the 2-deg and 12-deg eccentricities for the primary visual areas was: V1: 1470 mm2; V2: 1115 mm2; and V3: 819 mm2. The sizes of areas V1, V2 and V3 varied by about a factor of 2.5 across individuals; the sizes of V1 and V2 are significantly correlated within individuals, but there is a very low correlation between V1 and V3. These in vivo measurements of normal human retinotopic visual areas can be used as a reference for comparison to unusual cases involving developmental plasticity, recovery from injury, identifying homology with animal models, or analyzing the computational resources available within the visual pathways.


Cortex | 2005

Children's reading performance is correlated with white matter structure measured by diffusion tensor imaging

Gayle K. Deutsch; Robert F. Dougherty; Roland Bammer; Wai Ting Siok; John D. E. Gabrieli; Brian A. Wandell

We investigated the white matter structure in children (n = 14) with a wide range of reading performance levels using diffusion tensor imaging (DTI), a form of magnetic resonance imaging. White matter structure in a left temporo-parietal region that had been previously described as covarying with reading skill in adult readers also differs between children who are normal and poor readers. Specifically, the white matter structure measured using fractional anisotropy (FA) and coherence index (CI) significantly correlated with behavioral measurements of reading, spelling, and rapid naming performance. In general, lower anisotropy and lower coherence were associated with lower performance scores. Although the magnitude of the differences in children are smaller than those in adults, the results support the hypothesis that the structure of left temporoparietal neural pathways is a significant component of the neural system needed to develop fluent reading.


Philosophical Transactions of the Royal Society B | 2005

Visual field map clusters in human cortex

Brian A. Wandell; Alyssa A. Brewer; Robert F. Dougherty

We describe the location and general properties of nine human visual field maps. The cortical location of each map, as well as many examples of the eccentricity and angular representations within these maps, are shown in a series of images that summarize a large set of functional MRI data. The organization and properties of these maps are compared and contrasted with descriptions by other investigators. We hypothesize that the human visual field maps are arranged in several clusters, each comprising a group of maps that share a common foveal representation and semicircular eccentricity map. The spatial organization of these clusters suggests that the perceptual processing within each cluster serves related functions.


PLOS ONE | 2012

Tract Profiles of White Matter Properties: Automating Fiber-Tract Quantification

Jason D. Yeatman; Robert F. Dougherty; Nathaniel J. Myall; Brian A. Wandell; Heidi M. Feldman

Tractography based on diffusion weighted imaging (DWI) data is a method for identifying the major white matter fascicles (tracts) in the living human brain. The health of these tracts is an important factor underlying many cognitive and neurological disorders. In vivo, tissue properties may vary systematically along each tract for several reasons: different populations of axons enter and exit the tract, and disease can strike at local positions within the tract. Hence quantifying and understanding diffusion measures along each fiber tract (Tract Profile) may reveal new insights into white matter development, function, and disease that are not obvious from mean measures of that tract. We demonstrate several novel findings related to Tract Profiles in the brains of typically developing children and children at risk for white matter injury secondary to preterm birth. First, fractional anisotropy (FA) values vary substantially within a tract but the Tract FA Profile is consistent across subjects. Thus, Tract Profiles contain far more information than mean diffusion measures. Second, developmental changes in FA occur at specific positions within the Tract Profile, rather than along the entire tract. Third, Tract Profiles can be used to compare white matter properties of individual patients to standardized Tract Profiles of a healthy population to elucidate unique features of that patients clinical condition. Fourth, Tract Profiles can be used to evaluate the association between white matter properties and behavioral outcomes. Specifically, in the preterm group reading ability is positively correlated with FA measured at specific locations on the left arcuate and left superior longitudinal fasciculus and the magnitude of the correlation varies significantly along the Tract Profiles. We introduce open source software for automated fiber-tract quantification (AFQ) that measures Tract Profiles of MRI parameters for 18 white matter tracts. With further validation, AFQ Tract Profiles have potential for informing clinical management and decision-making.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Temporal-callosal pathway diffusivity predicts phonological skills in children

Robert F. Dougherty; Michal Ben-Shachar; Gayle K. Deutsch; Arvel Hernandez; Glenn R. Fox; Brian A. Wandell

The development of skilled reading requires efficient communication between distributed brain regions. By using diffusion tensor imaging, we assessed the interhemispheric connections in a group of children with a wide range of reading abilities. We segmented the callosal fibers into regions based on their likely cortical projection zones, and we measured diffusion properties in these segmented regions. Phonological awareness (a key factor in reading acquisition) was positively correlated with diffusivity perpendicular to the main axis of the callosal fibers that connect the temporal lobes. These results could be explained by several physiological properties. For example, good readers may have fewer but larger axons connecting left and right temporal lobes, or their axon membranes in these regions may be more permeable than the membranes of poor readers. These measurements are consistent with previous work suggesting that good readers have reduced interhemispheric connectivity and are better at processing rapidly changing visual and auditory stimuli.


Vision Research | 2001

Visual areas and spatial summation in human visual cortex

William A. Press; Alyssa A. Brewer; Robert F. Dougherty; Alex R. Wade; Brian A. Wandell

Functional MRI measurements can securely partition the human posterior occipital lobe into retinotopically organized visual areas (V1, V2 and V3) with experiments that last only 30 min. Methods for identifying functional areas in the dorsal and ventral aspect of the human occipital cortex, however, have not achieved this level of precision; in fact, different laboratories have produced inconsistent reports concerning the visual areas in dorsal and ventral occipital lobe. We report four findings concerning the visual representation in dorsal regions of occipital cortex. First, cortex near area V3A contains a central field representation that is distinct from the foveal representation at the confluence of areas V1, V2 and V3. Second, adjacent to V3A there is a second visual area, V3B, which represents both the upper and lower quadrants. The central representation in V3B appears to merge with that of V3A, much as the central representations of V1/2/3 come together on the lateral margin of the posterior pole. Third, there is yet another dorsal representation of the central visual field. This representation falls in area V7, which includes a representation of both the upper and lower quadrants of the visual field. Fourth, based on visual field and spatial summation measurements, it appears that the receptive field properties of neurons in area V7 differ from those in areas V3A and V3B.


Journal of Cognitive Neuroscience | 2011

Anatomical properties of the arcuate fasciculus predict phonological and reading skills in children

Jason D. Yeatman; Robert F. Dougherty; Elena Rykhlevskaia; Anthony J. Sherbondy; Gayle K. Deutsch; Brian A. Wandell; Michal Ben-Shachar

For more than a century, neurologists have hypothesized that the arcuate fasciculus carries signals that are essential for language function; however, the relevance of the pathway for particular behaviors is highly controversial. The primary objective of this study was to use diffusion tensor imaging to examine the relationship between individual variation in the microstructural properties of arcuate fibers and behavioral measures of language and reading skills. A second objective was to use novel fiber-tracking methods to reassess estimates of arcuate lateralization. In a sample of 55 children, we found that measurements of diffusivity in the left arcuate correlate with phonological awareness skills and arcuate volume lateralization correlates with phonological memory and reading skills. Contrary to previous investigations that report the absence of the right arcuate in some subjects, we demonstrate that new techniques can identify the pathway in every individual. Our results provide empirical support for the role of the arcuate fasciculus in the development of reading skills.


Current Opinion in Neurobiology | 2007

White matter pathways in reading

Michal Ben-Shachar; Robert F. Dougherty; Brian A. Wandell

Skilled reading requires mapping of visual text to sound and meaning. Because reading relies on neural systems spread across the brain, a full understanding of this cognitive ability involves the identification of pathways that communicate information between these processing regions. In the past few years, diffusion tensor imaging has been used to identify correlations between white matter properties and reading skills in adults and children. White matter differences have been found in left temporo-parietal areas and in posterior callosal tracts. We review these findings and relate them to possible pathways that are important for various aspects of reading. We describe how the results from diffusion tensor imaging can be integrated with functional results in good and poor readers.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Development of white matter and reading skills

Jason D. Yeatman; Robert F. Dougherty; Michal Ben-Shachar; Brian A. Wandell

White matter tissue properties are highly correlated with reading proficiency; we would like to have a model that relates the dynamics of an individual’s white matter development to their acquisition of skilled reading. The development of cerebral white matter involves multiple biological processes, and the balance between these processes differs between individuals. Cross-sectional measures of white matter mask the interplay between these processes and their connection to an individual’s cognitive development. Hence, we performed a longitudinal study to measure white-matter development (diffusion-weighted imaging) and reading development (behavioral testing) in individual children (age 7–15 y). The pattern of white-matter development differed significantly among children. In the left arcuate and left inferior longitudinal fasciculus, children with above-average reading skills initially had low fractional anisotropy (FA) that increased over the 3-y period, whereas children with below-average reading skills had higher initial FA that declined over time. We describe a dual-process model of white matter development comprising biological processes with opposing effects on FA, such as axonal myelination and pruning, to explain the pattern of results.

Collaboration


Dive into the Robert F. Dougherty's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nikola Stikov

École Polytechnique de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deborah Giaschi

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Armin Schwartzman

North Carolina State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge