Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Fettiplace is active.

Publication


Featured researches published by Robert Fettiplace.


The Journal of Physiology | 1981

An electrical tuning mechanism in turtle cochlear hair cells

A. C. Crawford; Robert Fettiplace

1. Intracellular recordings were made from single cochlear hair cells in the isolated half‐head of the turtle. The electrical responses of the cells were recorded under two conditions: (a) when the ear was stimulated with low‐intensity tones of different frequencies and (b) when current steps were injected through the intracellular electrode. The aim of the experiments was to evaluate the extent to which the cochleas frequency selectivity could be accounted for by the electrical properties of the hair cells.


Nature Reviews Neuroscience | 2006

The sensory and motor roles of auditory hair cells

Robert Fettiplace; Carole M. Hackney

Cochlear hair cells respond with phenomenal speed and sensitivity to sound vibrations that cause submicron deflections of their hair bundle. Outer hair cells are not only detectors, but also generate force to augment auditory sensitivity and frequency selectivity. Two mechanisms of force production have been proposed: contractions of the cell body or active motion of the hair bundle. Here, we describe recently identified proteins involved in the sensory and motor functions of auditory hair cells and present evidence for each force generator. Both motor mechanisms are probably needed to provide the high sensitivity and frequency discrimination of the mammalian cochlea.


The Journal of Physiology | 1991

THE ACTIONS OF CALCIUM ON THE MECHANO-ELECTRICAL TRANSDUCER CURRENT OF TURTLE HAIR CELLS

A. C. Crawford; Michael G. Evans; Robert Fettiplace

1. Mechano‐electrical transducer currents evoked by deflections of the hair bundle were recorded in turtle isolated hair cells under whole‐cell voltage clamp. The outcome of perfusing with solutions of reduced Ca2+ concentration was investigated. 2. The transducer current was roughly doubled by lowering the concentration of divalent cations from normal (2.2 mM‐Mg2+, 2.8 mM‐Ca2+) to 0 Mg2+, 0.5 mM‐Ca2+. No significant effects on the currents kinetics or reversal potential, or on the current‐displacement relationship, were noted. 3. If the Ca2+ concentration was lowered to 50 microM (with no Mg2+), there was about a threefold increase in the maximum current but other changes, including loss of adaptation and a decreased slope and negative shift in the current‐displacement relationship, were also observed. As a result, more than half the peak transducer current became activated at the resting position of the hair bundle compared to about a tenth in the control solution. 4. The extra changes manifest during perfusion with 50 microM‐Ca2+ had also been seen when the cell was held at positive potentials near the Ca2+ equilibrium potential. This supports the view that some consequences of reduced external Ca2+ stem from a decline in its intracellular concentration. 5. With 20 microM‐Ca2+, a standing inward current developed and the cell became unresponsive to mechanical stimuli, which may be explained by the transducer channels being fully activated at the resting position of the bundle. 6. The results are interpreted in terms of a dual action of Ca2+: an external block of the transducer channel which reduces the maximum current, and an intracellular effect on the position and slope of the current‐displacement relationship; the latter effect can be modelled by internal Ca2+ stabilizing one of the closed states of the channel. 7. During perfusion with 1 microM‐Ca2+, the holding current transiently increased but then returned to near its control level. There was a concomitant irreversible loss of sensitivity to hair bundle displacements which we suggest is due to rupture of the mechanical linkages to the transducer channel. 8. Following treatment with 1 microM‐Ca2+, single‐channel currents with an amplitude of ‐9 pA at ‐85 mV were sometimes visible in the whole‐cell recording. The probability of such channels being open could be modulated by small deflections of the hair bundle which indicates that they may be the mechano‐electrical transducer channels or conductance about 100 pS. 9. Open‐ and closed‐time distributions for the channel were fitted by single exponentials, the mean open time at rest being approximately 1 ms. The mean open time was increased and the mean closed time decreased for movements of the hair bundle towards the kinocilium.(ABSTRACT TRUNCATED AT 400 WORDS)


The Journal of Physiology | 1987

Variation of membrane properties in hair cells isolated from the turtle cochlea.

J J Art; Robert Fettiplace

1. Hair cells were enzymatically isolated from identified regions of the turtle basilar papilla and studied with the patch‐electrode technique. The experimental aim was to relate the resonance properties seen during current injection to the membrane currents measured in the same cell under whole‐cell voltage clamp. 2. Solitary hair cells had resting potentials of about ‐50 mV, and produced a damped oscillation in membrane potential at the onset and termination of a small current step; the resonant frequency varied from 9 to 350 Hz between cells, and was correlated with the region of papilla from which a cell had been isolated. The inferred frequency map was consistent with the tonotopic arrangement described previously in the intact papilla. 3. Depolarizations from the resting potential under voltage clamp activated a large net outward current with a steep voltage dependence, and the steady‐state current‐voltage relationship was strongly rectified about the resting potential. Input resistances tended to be smaller in cells with higher resonant frequencies, although there was no concurrent variation in membrane area as inferred from the cell capacitance. 4. The kinetics of the outward current evoked by a small depolarizing step depended upon the resonant frequency, fo, of the hair cell, and were slower in low‐frequency cells. On repolarization to the resting potential the current decayed exponentially with a time constant that changed from 150 ms in the lowest‐frequency cell to less than 1 ms in the highest‐frequency one. The time constant was approximately proportional to 1/f0(2). 5. Following repolarization to different membrane potentials, the tail current was found to reverse around ‐80 mV, indicating that the outward current was due mainly to K+. 6. The outward current was abolished by extracellular application of 25 mM‐tetraethylammonium chloride (TEA), or on exchange of Cs+ for K+ in the intracellular medium filling the recording electrode, each experiment supporting the contention that K+ is the major current carrier. Such treatments also removed the oscillations in membrane potential evoked by imposed current steps. 7. Addition of TEA or intracellular perfusion with Cs+ also revealed a fast inward current with an ionic sensitivity consistent with its being carried by Ca2+. Like the K+ current, the Ca2+ current was activated by small depolarization from the resting potential, and over this voltage range it was about five to ten times smaller than the K+ current. Its activation was more rapid than the fastest outward currents in high‐frequency cells.(ABSTRACT TRUNCATED AT 400 WORDS)


Nature Neuroscience | 2009

Localization of inner hair cell mechanotransducer channels using high speed calcium imaging

Maryline Beurg; Robert Fettiplace; Jong-Hoon Nam; Anthony J. Ricci

Hair cells detect vibrations of their stereociliary bundle by activation of mechanically sensitive transducer channels. Although evidence suggests the transducer channels are near the stereociliary tops and are opened by force imparted by tip links connecting contiguous stereocilia, the exact channel site remains controversial. We used fast confocal imaging of fluorescence changes reflecting calcium entry during bundle stimulation to localize the channels. Calcium signals were visible in single stereocilia of rat cochlear inner hair cells and were up to tenfold larger and faster in the second and third stereociliary rows than in the tallest first row. The number of functional stereocilia was proportional to transducer current amplitude, indicating that there were about two channels per stereocilium. Comparable results were obtained in outer hair cells. The observations, supported by theoretical simulations, suggest there are no functional mechanically sensitive transducer channels in first row stereocilia and imply the channels are present only at the bottom of the tip links.


Nature | 2005

Force generation by mammalian hair bundles supports a role in cochlear amplification

Helen J. Kennedy; A. C. Crawford; Robert Fettiplace

It is generally accepted that the acute sensitivity and frequency discrimination of mammalian hearing requires active mechanical amplification of the sound stimulus within the cochlea. The prevailing hypothesis is that this amplification stems from somatic electromotility of the outer hair cells attributable to the motor protein prestin. Thus outer hair cells contract and elongate in synchrony with the sound-evoked receptor potential. But problems arise with this mechanism at high frequencies, where the periodic component of the receptor potential will be attenuated by the membrane time constant. On the basis of work in non-mammalian vertebrates, force generation by the hair bundles has been proposed as an alternative means of boosting the mechanical stimulus. Here we show that hair bundles of mammalian outer hair cells can also produce force on a submillisecond timescale linked to adaptation of the mechanotransducer channels. Because the bundle motor may ultimately be limited by the deactivation rate of the channels, it could theoretically operate at high frequencies. Our results show the existence of another force generator in outer hair cells that may participate in cochlear amplification.


The Journal of Physiology | 1989

Activation and adaptation of transducer currents in turtle hair cells

A. C. Crawford; Michael G. Evans; Robert Fettiplace

1. Transducer currents were recorded in turtle cochlear hair cells during mechanical stimulation of the hair bundle. The currents were measured under whole‐cell voltage clamp in isolated cells that were firmly stuck to the floor of the recording chamber. 2. Stimuli were calibrated by projecting the image of the hair bundle onto a rapidly scanned 128 photodiode array. This technique showed that, while the cell body was immobilized, the tip of the bundle would follow faithfully the motion of an attached glass probe up to frequencies of more than 1 kHz. 3. The relationship between inward transducer current and bundle displacement was sigmoidal. Maximum currents of 200‐400 pA were observed for deflections of the tip of the bundle of 0.5 microns, equivalent to rotating the bundle by about 5 deg. 4. In response to a step deflection of the bundle, the current developed with a time constant (about 0.4 ms for small stimuli) that decreased with the size of displacement. This suggests that the onset of the current was limited by the gating kinetics of the transduction channel. The onset time course was slowed about fourfold for a 20 degrees C drop in temperature. 5. For small maintained displacements, the current relaxed to about a quarter of the peak level with a time constant of 3‐5 ms. This adaptation was associated with a shift of the current‐displacement relationship in the direction of the stimulus. The rate and extent of adaptation were decreased by lowering external Ca2+. 6. Adaptation was strongly voltage sensitive, and was abolished at holding potentials positive to the reversal potential of the transducer current of about 0 mV. It was also diminished by loading cells with 10 mM of the Ca2+ chelator BAPTA. These observations suggest that adaptation may be partly controlled by influx of Ca2+ through the transducer channels. 7. Removal of adaptation produced asymmetric responses, with fast onsets but slow decays following return of the bundle to its resting position; the offset time course depended on both the magnitude and duration of the prior displacement. 8. In some experiments, hair bundles were deflected with a flexible glass fibre whose motion was monitored using a dual photodiode arrangement. Positive holding potentials abolished adaptation of the transducer currents, but had no influence on the time course of motion of the fibre. We have no evidence therefore that adaptation is caused by a mechanical reorganization within the bundle.


The Journal of Physiology | 1980

The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle

A. C. Crawford; Robert Fettiplace

1. The electrical responses of single auditory nerve fibres or cochlear hair cells were recorded in the isolated half‐head of the turtle Pseudemys scripta elegans. Responses to sound stimuli presented to the tympanum could be recorded for at least 4 hr after isolation.


Nature Neuroscience | 2003

Fast adaptation of mechanoelectrical transducer channels in mammalian cochlear hair cells.

Helen J. Kennedy; Michael G. Evans; A. C. Crawford; Robert Fettiplace

Outer hair cells are centrally involved in the amplification and frequency tuning of the mammalian cochlea, but evidence about their transducing properties in animals with fully developed hearing is lacking. Here we describe measurements of mechanoelectrical transducer currents in outer hair cells of rats between postnatal days 5 and 18, before and after the onset of hearing. Deflection of hair bundles using a new rapid piezoelectric stimulator evoked transducer currents with ultra-fast activation and adaptation kinetics. Fast adaptation resembled the same process in turtle hair cells, where it is regulated by changes in stereociliary calcium. It is argued that sub-millisecond transducer adaptation can operate in outer hair cells under the ionic, driving force and temperature conditions that prevail in the intact mammalian cochlea.


Neuron | 2003

Tonotopic variation in the conductance of the hair cell mechanotransducer channel.

Anthony J. Ricci; A. C. Crawford; Robert Fettiplace

Hair cells in the vertebrate cochlea are arranged tonotopically with their characteristic frequency (CF), the sound frequency to which they are most sensitive, changing systematically with position. Single mechanotransducer channels of hair cells were characterized at different locations in the turtle cochlea. In 2.8 mM external Ca2+, the channels chord conductance was 118 pS (range 80-163 pS), which nearly doubled (range 149-300 pS) on reducing Ca2+ to 50 microM. In both Ca2+ concentrations, the conductance was positively correlated with hair cell CF. Variation in channel conductance can largely explain the increases in size of the macroscopic transducer current and speed of adaptation with CF. It suggests diversity of transducer channel structure or environment along the cochlea that may be an important element of its tonotopic organization.

Collaboration


Dive into the Robert Fettiplace's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maryline Beurg

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam C. Goldring

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Kyunghee X. Kim

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge