Robert Fred Henry Walter
University of Duisburg-Essen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert Fred Henry Walter.
Modern Pathology | 2014
Fabian Dominik Mairinger; Saskia Ting; Robert Werner; Robert Fred Henry Walter; Thomas Hager; Claudia Vollbrecht; Daniel Christoph; Karl Worm; Thomas Mairinger; Sien-Yi Sheu-Grabellus; Dirk Theegarten; Kurt Werner Schmid; Jeremias Wohlschlaeger
MicroRNAs (miRNAs) are a class of small (∼22 nucleotides), non-coding, highly conserved single-stranded RNAs with posttranscriptional regulatory features, including the regulation of cell proliferation, differentiation, survival, and apoptosis. They are deregulated in a broad variety of tumors showing characteristic expression patterns and can, thus, be used as a diagnostic tool. In contrast to non-small cell carcinoma of the lung neuroendocrine lung tumors, encompassing typical and atypical carcinoids, small cell lung cancer and large cell neuroendocrine lung cancer, no data about deregulation of tumor entity-specific miRNAs are available to date. miRNA expression differences might give useful information about the biological characteristics of these tumors, as well as serve as helpful markers.In 12 pulmonary neuroendocrine tumors classified as either typical carcinoid, atypical, large cell neuroendocrine or small cell lung cancer, screening for 763 miRNAs known to be involved in pulmonary cancerogenesis was conducted by performing 384-well TaqMan low-density array real-time qPCR. In the entire cohort, 44 miRNAs were identified, which showed a significantly different miRNA expression. For 12 miRNAs, the difference was highly significant (P<0.01). Eight miRNAs showed a negative (miR-22, miR-29a, miR-29b, miR-29c, miR-367*; miR-504, miR-513C, miR-1200) and four miRNAs a positive (miR-18a, miR-15b*, miR-335*, miR-1201) correlation to the grade of tumor biology. The miRNAs let-7d; miR-19; miR-576-5p; miR-340*; miR-1286 are significantly associated with survival. Members of the miR-29 family seem to be extremely important in this group of tumors. We found a number of miRNAs, which showed a highly significant deregulation in pulmonary neuroendocrine tumors. Moreover, some of these deregulated miRNAs seem to allow discrimination of the various subtypes of pulmonary neuroendocrine tumors. Thus, the analysis of specific sets of miRNAs can be proposed as diagnostic and/or predictive markers in this group of neoplasias.
Immunome Research | 2013
Paul Zarogoulidis; Lonny Yarmus; Kaid Darwiche; Robert Fred Henry Walter; Haidong Huang; Zhigang Li; Bojan Zaric; Kosmas Tsakiridis; Konstantinos Zarogoulidis
Interleukin 6 is a multifunctional cytokine. Its increased levels have been associated with elevated cancer risk, and also these levels have been found to be a prognostic factor for several cancer types. In addition, increased levels have been found in coronary heart disease, insulin resistant patients, advance stage cancer patients, atopy/asthma and in patients with blood circulating micrometastasis. Additionally several studies with different types of cancers have been performed to identify the correlation between interleukin-6 levels, stage, treatment response and severity of symptoms. The influence of interleukin-6 is performed mainly through the janus kinase-signal transducer and activator of transcription-zinc finger protein 1-2 signaling pathway. As a result, the increased levels of interleukin-6 are responsible for enhanced neo-angiogenesis, inhibition of cancer cell apoptosis and deregulation of the control mechanisms in the microenvironment. In addition, increased levels of inteleukin-6 have been found to increase the production of collagen and a-actin which induce interstitial lung disease. In the current mini review we will present information regarding the interleukin-6 and published results in several cancer studies and finally we will comment in future treatment approaches blocking this cytokine in cancer patients.
Pathology Research and Practice | 2013
Robert Fred Henry Walter; Fabian Dominik Mairinger; Jeremias Wohlschlaeger; Karl Worm; Saskia Ting; Claudia Vollbrecht; Kurt Werner Schmid; Thomas Hager
BACKGROUND Formalin-fixation, paraffin-embedding is the standard processing technique for tumor tissue in modern pathology. New techniques such as cryo-conservation allow rapid fixation and long-time storage but come along with increased costs and enlarged storage complexity. However, formalin-fixed, paraffin-embedded (FFPE) tissue is available in a large quantity, making it the ideal material for retrospective studies. The following study was designed to investigate the influence of formalin-fixation on the quality of mRNA and applicability of FFPE-derived mRNA for gene expression analysis. Three potential reference genes for pulmonary tumors with neuroendocrine differentiation were included and tested for their robust expression. MATERIALS AND METHODS Eighty specimens collected from 2005 to 2012 at the Institute of Pathology and Neuropathology at the University Hospital Essen were analyzed for their gene expression by using TaqMan(®) gene expression assays on demand (AoD). Three distinct potential reference genes (ACTB, GAPDH, HPRT1) were evaluated for their expression, and a proteasome subunit (PSMA1) was included in the analysis as tumor marker and functioned as an internal technical control. CONCLUSION For GAPDH and ACTB, a highly significant correlation and consistent expression between the investigated entities was found, making them reliable reference genes for further research. Additionally, the feasibility for a FFPE tissue-based gene expression analysis was verified by showing that the mRNA quality is sufficient. When standardized FFPE preparation is performed carefully, sufficient mRNA can be isolated for reliable and successful gene expression analysis. That provides the basis the door for large, retrospective studies that correlate molecular and clinical follow-up data.
British Journal of Cancer | 2015
Claudia Vollbrecht; Robert Werner; Robert Fred Henry Walter; Daniel Christoph; Lukas C. Heukamp; Martin Peifer; Burkhard Hirsch; Lina Burbat; Thomas Mairinger; Kurt Werner Schmid; Jeremias Wohlschlaeger; Fabian Dominik Mairinger
Background:Lung cancer is the leading cause of cancer-related deaths worldwide. The typical and atypical carcinoid (TC and AC), the large-cell neuroendocrine carcinoma (LCNEC) and the small-cell lung cancers (SCLC) are subgroups of pulmonary tumours that show neuroendocrine differentiations. With the rising impact of molecular pathology in routine diagnostics the interest for reliable biomarkers, which can help to differentiate these subgroups and may enable a more personalised treatment of patients, grows.Methods:A collective of 70 formalin-fixed, paraffin-embedded (FFPE) pulmonary neuroendocrine tumours (17 TCs, 17 ACs, 19 LCNECs and 17 SCLCs) was used to identify biomarkers by high-throughput sequencing. Using the Illumina TruSeq Amplicon-Cancer Panel on the MiSeq instrument, the samples were screened for alterations in 221 mutation hot spots of 48 tumour-relevant genes.Results:After filtering >26 000 detected variants by applying strict algorithms, a total of 130 mutations were found in 29 genes and 49 patients. Mutations in JAK3, NRAS, RB1 and VHL1 were exclusively found in SCLCs, whereas the FGFR2 mutation was detected in LCNEC only. KIT, PTEN, HNF1A and SMO were altered in ACs. The SMAD4 mutation corresponded to the TC subtype. We prove that the frequency of mutations increased with the malignancy of tumour type. Interestingly, four out of five ATM-mutated patients showed an additional alteration in TP53, which was by far the most frequently altered gene (28 out of 130; 22%). We found correlations between tumour type and IASLC grade for ATM- (P=0.022; P=0.008) and TP53-mutated patients (P<0.001). Both mutated genes were also associated with lymph node invasion and distant metastasis (P⩽0.005). Furthermore, PIK3CA-mutated patients with high-grade tumours showed a reduced overall survival (P=0.040) and the mutation frequency of APC and ATM in high-grade neuroendocrine lung cancer patients was associated with progression-free survival (PFS) (P=0.020).Conclusions:The implementation of high-throughput sequencing for the analysis of the neuroendocrine lung tumours has revealed that, even if these tumours encompass several subtypes with varying clinical aggressiveness, they share a number of molecular features. An improved understanding of the biology of neuroendocrine tumours will offer the opportunity for novel approaches in clinical management, resulting in a better prognosis and prediction of therapeutic response.
Future Oncology | 2015
Robert Fred Henry Walter; Fabian Dominik Mairinger; Robert Werner; Saskia Ting; Claudia Vollbrecht; Dirk Theegarten; Daniel Christoph; Konstantinos Zarogoulidis; Kurt Werner Schmid; Paul Zarogoulidis; Jeremias Wohlschlaeger
BACKGROUND Neuroendocrine tumors of the lung (NELC) account for 25% of all lung cancer cases and transcription factors may drive dedifferentiation of these tumors. This study was conducted to identify supportive diagnostic and prognostic biomarkers. MATERIALS & METHODS A total of 16 TC, 13 AC, 16 large cell neuroendocrine carcinomas and 15 small cell lung cancer were investigated for the mRNA expression of 11 transcription factors and related genes (MYB, MYBBP1A, OCT4, PAX6, PCDHB, RBP1, SDCBP, SOX2, SOX4, SOX11, TEAD2). RESULTS SOX4 (p = 0.0002), SOX11 (p < 0.0001) and PAX6 (p = 0.0002) were significant for tumor type. Elevated PAX6 and SOX11 expression correlated with poor outcome in large cell neuroendocrine carcinomas and small cell lung cancer (p < 0.0001 and p = 0.0232, respectively) based on survival data of 34 patients (57%). CONCLUSION Aggressiveness of NELC correlated with increasing expression of transcription factors. SOX11 seems to be a highly valuable diagnostic and prognostic marker for aggressive NELC.
Journal of Cancer | 2014
Fabian Dominik Mairinger; Robert Fred Henry Walter; Dirk Theegarten; Thomas Hager; Claudia Vollbrecht; Daniel Christoph; Karl Worm; Saskia Ting; Robert Werner; Georgios Stamatis; Thomas Mairinger; Hideo Baba; Konstantinos Zarogoulidis; Haidong Huang; Qiang Li; Kosmas Tsakiridis; Paul Zarogoulidis; Kurt Werner Schmid; Jeremias Wohlschlaeger
Background: Proteasomal subunit PSMB4 was suggested to be a survival gene in an animal model of hepatocellular carcinoma and in glioblastoma cell lines. In pulmonary adenocarcinoma, a high expression of these genes was found to be associated with poor differentiation and survival. This study investigates the gene expression levels of 26S proteasome subunits in human pulmonary neuroendocrine tumours including typical (TC) and atypical (AC) carcinoid tumours as well as small cell (SCLC) and large cell (LCNEC) neuroendocrine carcinomas. Material and methods: Gene expression levels of proteasomal subunits (PSMA1, PSMA5, PSMB4, PSMB5 and PSMD1) were investigated in 80 neuroendocrine pulmonary tumours (each 20 TC, AC, LCNLC and SCLC) and compared to controls. mRNA levels were determined by using TaqMan assays. Immunohistochemistry on tissue microarrays (TMA) was performed to determine the expression of ki67, cleaved caspase 3 and PSMB4. Results: All proteasomal subunit gene expressions were significantly upregulated in TC, AC, SCLC and LCNEC compared to controls. PSMB4 mRNA is differently expressed between all neuroendocrine tumour subtypes demonstrating the highest expression and greatest range in LCNEC (p=0.043), and is significantly associated with proliferative activity (p=0.039). Conclusion: In line with other 26S proteasomal subunits PSMB4 is significantly increased, but differently expressed between pulmonary neuroendocrine tumours and is associated with the proliferative activity. Unlike in pulmonary adenocarcinomas, no association with biological behaviour was observed, suggesting that increased proteasomal subunit gene expression is a common and probably early event in the tumorigenesis of pulmonary neuroendocrine tumours regardless of their differentiation.
advances in computer entertainment technology | 2011
Robert Fred Henry Walter; Maic Masuch
Domain-specific languages make the relevant details of a domain explicit while omitting the distracting ones. This implies many benefits regarding development speed and quality as well as the exchange of information between expert groups. In order to utilize these benefits for game development, we present a language engineering workflow that describes best practices to identify a reasonable domain abstraction, illustrated by means of a language for 2D Point &Click Adventures. We discuss how this process can be integrated into an agile, iterative development process and what thereby needs to be considered.
Oncotarget | 2015
Robert Fred Henry Walter; Robert Werner; Saskia Ting; Claudia Vollbrecht; Dirk Theegarten; Daniel Christoph; Kurt Werner Schmid; Jeremias Wohlschlaeger; Fabian Dominik Mairinger
Background Neuroendocrine tumors of the lung comprise typical (TC) and atypical carcinoids (AC), large-cell neuroendocrine cancer (LCNEC) and small-cell lung cancer (SCLC). Cell cycle and apoptosis are key pathways of multicellular homeostasis and deregulation of these pathways is associated with cancerogenesis. Materials and Methods Sixty representative FFPE-specimens (16 TC, 13 AC, 16 LCNEC and 15 SCLC) were used for mRNA expression analysis using the NanoString technique. Eight genes related to apoptosis and ten genes regulating key points of cell cycle were investigated. Results ASCL1, BCL2, CASP8, CCNE1, CDK1, CDK2, CDKN1A and CDKN2A showed lower expression in carcinoids compared to carcinomas. In contrast, CCNE1 and CDK6 showed elevated expression in carcinoids compared to carcinomas. The calculated BCL2/BAX ratio showed increasing values from TC to SCLC. Between SCLC and LCNEC CDK2, CDKN1B, CDKN2A and PNN expression was significantly different with higher expression in SCLC. Conclusion Carcinoids have increased CDK4/6 and CCND1 expression controlling RB1 phosphorylation via this signaling cascade. CDK2 and CCNE1 were increased in carcinomas showing that these use the opposite way to control RB1. BAX and BCL2 are antagonists in regulating apoptosis. BCL2 expression increased over BAX expression with increasing malignancy of the tumor from TC to SCLC.
Journal of Cancer | 2014
Fabian Dominik Mairinger; Robert Fred Henry Walter; Robert Werner; Daniel Christoph; Saskia Ting; Claudia Vollbrecht; Konstantinos Zarogoulidis; Haidong Huang; Qiang Li; Kurt Werner Schmid; Jeremias Wohlschlaeger; Paul Zarogoulidis
Background: Lung cancer still remains the leading cause of cancer for men after prostate cancer and breast cancer for women. Angiogenesis is considered a major microenvironment modifier. Material and Methods: Demographic data and study design; The study is based on a collective of twenty representative specimens of each tumour entity (Typical Carcinoid, Atypical Carcinoid, Large-Cell Neuroendocrine Carcinoma , Small Cell Lung Cancer) for mRNA expression analysis. The following methods were performed: RNA Extraction and RNA Integrity Assessment, NanoString CodeSet Design and Expression Quantification, NanoString Data Processing and Statistical Analysis. Results: KDR rendered significant association to aggressiveness of the tumour and decreases with increasing malignancy (p=0.049). A decreased expression of HIF1A and KDR mRNA as associated with a higher risk of tumour invasion in vessels (HIF1A: p=0.034; KDR: p=0.029). FIGF and HIF1A expression levels are significantly associated with progression-free survival (FIGF: p= 0.021; HIF1A: p= 0.049). CRHR2 and FLT4 are stronger expressed in female than in male patients (CRHR2: p=0.024, FLT4: p=0.004). FIGF expression is still significant between LCNEC and SCLC (p=0.023). FLT4 and KDR show highly significant association to one of the analysed groups (FLT4: p=0.001; KDR: p=0.006). Additionally, HIF1A expression differs significantly between these focus cohorts (p=0.018). Conclusion: We should consider for clinical practice application which factors affect most the tumour growth and distal metastasis, thereafter investigate easy to administer drugs with low side effects. Probably a cluster system of therapy should be established where a drug targets simultaneously different pathways of the same origin.
International Journal of Nanomedicine | 2013
Kaid Darwiche; Paul Zarogoulidis; Leslie Krauss; Filiz Oezkan; Robert Fred Henry Walter; Robert Werner; Dirk Theegarten; Leonidas Sakkas; Antonios Sakkas; Wolfgang Hohenforst-Scmidt; Konstantinos Zarogoulidis; Lutz Freitag
Background There are currently many techniques and devices available for the diagnosis of lung cancer. However, rapid on-site diagnosis is essential for early-stage lung cancer, and in the current work we investigated a new diagnostic illumination nanotechnology. Methods Tissue samples were obtained from lymph nodes, cancerous tissue, and abnormal intrapulmonary lesions at our interventional pulmonary suites. The following diagnostic techniques were used to obtain the samples: endobronchial ultrasound bronchoscopy; flexible bronchoscopy; and rigid bronchoscopy. Flexible and rigid forceps were used because several of the patients were intubated using a rigid bronchoscope. In total, 30 tissue specimens from 30 patients were prepared. CytoViva® illumination nanotechnology was subsequently applied to each of the biopsy tissue slides. Results A spectral library was created for adenocarcinoma, epidermal growth factor receptor mutation-positive adenocarcinoma, squamous cell carcinoma, usual interstitial pneumonitis, non-specific interstitial pneumonitis, typical carcinoid tumor, sarcoidosis, idiopathic pulmonary fibrosis, small cell neuroendocrine carcinoma, thymoma, epithelioid and sarcomatoid mesothelioma, cryptogenic organizing pneumonia, malt cell lymphoma, and Wegener’s granulomatosis. Conclusion The CytoViva software, once it had created a specific spectral library for each entity, was able to identify the same disease again in subsequent paired sets of slides of the same disease. Further evaluation of this technique could make this illumination nanotechnology an efficient rapid on-site diagnostic tool.