Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert G. Bingham is active.

Publication


Featured researches published by Robert G. Bingham.


Nature | 2012

Inland thinning of West Antarctic Ice Sheet steered along subglacial rifts

Robert G. Bingham; Fausto Ferraccioli; Edward C. King; Robert D Larter; Hamish D. Pritchard; Andrew M. Smith; David G. Vaughan

Current ice loss from the West Antarctic Ice Sheet (WAIS) accounts for about ten per cent of observed global sea-level rise. Losses are dominated by dynamic thinning, in which forcings by oceanic or atmospheric perturbations to the ice margin lead to an accelerated thinning of ice along the coastline. Although central to improving projections of future ice-sheet contributions to global sea-level rise, the incorporation of dynamic thinning into models has been restricted by lack of knowledge of basal topography and subglacial geology so that the rate and ultimate extent of potential WAIS retreat remains difficult to quantify. Here we report the discovery of a subglacial basin under Ferrigno Ice Stream up to 1.5 kilometres deep that connects the ice-sheet interior to the Bellingshausen Sea margin, and whose existence profoundly affects ice loss. We use a suite of ice-penetrating radar, magnetic and gravity measurements to propose a rift origin for the basin in association with the wider development of the West Antarctic rift system. The Ferrigno rift, overdeepened by glacial erosion, is a conduit which fed a major palaeo-ice stream on the adjacent continental shelf during glacial maxima. The palaeo-ice stream, in turn, eroded the ‘Belgica’ trough, which today routes warm open-ocean water back to the ice front to reinforce dynamic thinning. We show that dynamic thinning from both the Bellingshausen and Amundsen Sea region is being steered back to the ice-sheet interior along rift basins. We conclude that rift basins that cut across the WAIS margin can rapidly transmit coastally perturbed change inland, thereby promoting ice-sheet instability.


Journal of Glaciology | 2005

Subglacial drainage processes at a High Arctic polythermal valley glacier

Robert G. Bingham; Peter Nienow; Martin Sharp; Sarah Boon

Dye-tracer experiments undertaken over two summer melt seasons at polythermal John Evans Glacier, Ellesmere Island, Canada, were designed to investigate the character of the subglacial drainage system and its evolution over a melt season. In both summers, dye injections were conducted at several moulins and traced to a single subglacial outflow. Tracer breakthrough curves suggest that supraglacial meltwater initially encounters a distributed subglacial drainage system in late June. The subsequent development and maintenance of a channelled subglacial network are dependent upon sustained high rates of surface melting maintaining high supraglacial inputs. In a consistently warm summer (2000), subglacial drainage became rapidly and persistently channelled. In a cooler summer (2001), distributed subglacial drainage predominated. These observations confirm that supraglacial meltwater can access the bed of a High Arctic glacier in summer, and induce significant structural evolution of the subglacial drainage system. They do not support the view that subglacial drainage systems beneath polythermal glaciers are always poorly developed. They do suggest that the effects on ice flow of surface water penetration to the bed of predominantly cold glaciers may be short-lived.


Annals of Glaciology | 2003

Intra-annual and intra-seasonal flow dynamics of a High Arctic polythermal valley glacier

Robert G. Bingham; Peter Nienow; Martin Sharp

Abstract Measurements of surface dynamics on polythermal John Evans Glacier, Nunavut, Canada, over two winter periods and every 7–10 days throughout two melt seasons (June–July 2000, 2001) provide new insight into spatio-temporal patterns of High Arctic glacier dynamics. In the lower ablation zone, mean annual surface velocities are 10–21 m a–1, but peak velocities up to 50% higher are attained during late June/early July. In the upper ablation zone and lower accumulation zone, mean annual surface velocities are typically 10–18 m a–1, and peak velocities up to 40% higher occur during late July. In the upper accumulation zone, mean annual surface velocities are 2–9 m a–1, and motion in mid- to late July exceeds this by up to 10%. Rapid drainage of ponded supraglacial water in the upper ablation zone to an initially distributed subglacial drainage system in mid-June may force excess surface motion in the warm-based lower glacier. The data indicate that the duration of the velocity response may be related to the rate of channelization of the basal drainage, and the velocity response may be transmitted up-glacier by longitudinal coupling. An increase in surface velocities in the middle glacier in late July occurs in conjunction with the opening of two further moulins in the accumulation zone.


Geochemistry Geophysics Geosystems | 2011

Potential seaways across West Antarctica

David G. Vaughan; David K. A. Barnes; Peter T. Fretwell; Robert G. Bingham

The West Antarctic ice sheet (WAIS) has long been considered vulnerable to rapid retreat and today parts are rapidly losing ice. Projection of future change in WAIS is, however, hampered by our poor understanding of past changes, especially during interglacial periods that could be analogs for the future, but which undoubtedly provide an opportunity for testing predictive models. We consider how ice-loss would open seaways across WAIS; these would likely alter Southern Ocean circulation and climate, and would broadly define the de-glacial state, but they may also have left evidence of their existence in the coastal seas they once connected. We show the most likely routes for such seaways, and that a direct seaway between Weddell and Ross seas, which did not pass through the Amundsen Sea sector, is unlikely. Continued ice-loss at present rates would open seaways between Amundsen and Weddell seas (A-W), and Amundsen and Bellingshausen seas (A-B), in around one thousand years. This timescale indicates potential future vulnerability, but also suggests seaways may have opened in recent interglacial periods. We attempt to test this hypothesis using contemporary bryozoan species assemblages around Antarctica, concluding that anomalously high similarity in assemblages in the Weddell and Amundsen seas supports recent migration through A-W. Other authors have suggested opening of seaways last occurred during Marine Isotope Stage 7a (209 ka BP), but we conclude that opening could have occurred in MIS 5e (100 ka BP) when Antarctica was warmer than present and likely contributed to global sea levels higher than today.


Geological Society of America Bulletin | 2014

The Ellsworth Subglacial Highlands: Inception and retreat of the West Antarctic Ice Sheet

Neil Ross; Tom A. Jordan; Robert G. Bingham; Hugh F. J. Corr; Fausto Ferraccioli; Anne Le Brocq; David M. Rippin; Andrew P. Wright; Martin J. Siegert

Antarctic subglacial highlands are where the Antarctic ice sheets first developed and the “pinning points” where retreat phases of the marine-based sectors of the ice sheet are impeded. Due to low ice velocities and limited present-day change in the ice-sheet interior, West Antarctic subglacial highlands have been overlooked for detailed study. These regions have considerable potential, however, for establishing the locations from which the West Antarctic Ice Sheet originated and grew, and its likely response to warming climates. Here, we characterize the subglacial morphology of the Ellsworth Subglacial Highlands, West Antarctica, from ground-based and aerogeophysical radio-echo sounding (RES) surveys and the Moderate-Resolution Imaging Spectroradiometer (MODIS) Mosaic of Antarctica. We document well-preserved classic landforms associated with restricted, dynamic, marine-proximal alpine glaciation, with hanging tributary valleys feeding a significant overdeepened trough (the Ellsworth Trough) cut by valley (tidewater) glaciers. Fjord-mouth threshold bars down-ice of two overdeepenings define both the northwest and southeast termini of paleo-outlet glaciers, which cut and occupied the Ellsworth Trough. Satellite imagery reveals numerous other glaciated valleys, terminating at the edge of deep former marine basins (e.g., Bentley Subglacial Trench), throughout the Ellsworth Subglacial Highlands. These geomorphic data can be used to reconstruct the glaciology of the ice masses that formed the proto–West Antarctic Ice Sheet. The landscape predates the present ice sheet and was formed by a small dynamic ice field(s), similar to those of the present-day Antarctic Peninsula, at times when the marine sections of the West Antarctic Ice Sheet were absent. The Ellsworth Subglacial Highlands represent a major seeding center of the paleo–West Antarctic Ice Sheet, and its margins represent the pinning point at which future retreat of the marine-based West Antarctic Ice Sheet would be arrested.


Reviews of Geophysics | 2017

Atmosphere‐ocean‐ice interactions in the Amundsen Sea Embayment, West Antarctica

John Turner; Andrew Orr; G. Hilmar Gudmundsson; Adrian Jenkins; Robert G. Bingham; Claus-Dieter Hillenbrand; Thomas J. Bracegirdle

Over recent decades outlet glaciers of the Amundsen Sea Embayment (ASE), West Antarctica, have accelerated, thinned and retreated, and are now contributing approximately 10% to global sea level rise. All the ASE glaciers flow into ice shelves, and it is the thinning of these since the 1970s, and their ungrounding from “pinning points” that is widely held to be responsible for triggering the glaciers’ decline. These changes have been linked to the inflow of warm Circumpolar Deep Water (CDW) onto the ASEs continental shelf. CDW delivery is highly variable, and is closely related to the regional atmospheric circulation. The ASE is south of the Amundsen Sea Low (ASL), which has a large variability and which has deepened in recent decades. The ASL is influenced by the phase of the Southern Annular Mode, along with tropical climate variability. It is not currently possible to simulate such complex atmosphere-ocean-ice interactions in models, hampering prediction of future change. The current retreat could mark the beginning of an unstable phase of the ASE glaciers that, if continued, will result in collapse of the West Antarctic Ice Sheet, but numerical ice-sheet models currently lack the predictive power to answer this question. It is equally possible that the recent retreat will be short-lived and that the ASE will find a new stable state. Progress is hindered by incomplete knowledge of bed topography in the vicinity of the grounding line. Furthermore, a number of key processes are still missing or poorly represented in models of ice-flow.


Journal of Geophysical Research | 2008

An investigation into the mechanisms controlling seasonal speedup events at a High Arctic glacier

Robert G. Bingham; Alun Hubbard; Peter Nienow; Martin Sharp

Bingham, R.G., Hubbard, A.L., Nienow, P.W., Sharp, M.J. (2008).An investigation into the mechanisms controlling seasonal speedup events at a High Arctic glacier. Journal of Geophysical Research-Earth Surface 113 (F2), F02006. Sponsorship: NERC/ NSERC/ the University of Alberta Circumpolar Institute and Northern Science Training Programme/ the Geological Society of America


Journal of Environmental and Engineering Geophysics | 2007

Radio-Echo Sounding Over Polar Ice Masses

Robert G. Bingham; Martin J. Siegert

Radio-echo sounding (RES) constitutes the principal means by which glaciologists investigate the subsurface properties of the polar ice sheets and ice caps. Developed in the 1960s as a method for locating and mapping the subglacial interface beneath extensive regions of icecovered terrain, thereby to constrain ice volume and morphology, it was quickly discovered that RES supplies numerous additional cryospheric parameters, including strong reflectors derived from subglacial lakes, and isochronous internal reflectors derived from burial of snow deposition events. Soon after its establishment, RES was integrated into long-range aircraft primarily to image the bed across Antarctica and Greenland (1960s/1970s). More recent airborne campaigns (1980s/1990s), while supplementing this coverage and extending to the ice caps of the High Arctic, have utilised only short-range aircraft, and were designed explicitly to support specific scientific studies, such as locating optimal sites for deep ice-coring, constraining the dimensions of subglacial lakes, or resolving internal layers for studies of ice sheet mass balance, form and flow. In parallel with these developments, ground-based (over-snow) RES equipment has also been used to investigate the englacial and subglacial conditions at a number of key locations across the polar ice sheets. This article discusses the many scientific advances which have resulted from these efforts, and offers recommendations for future developments in terms of (i) reanalysis of existing data and (ii) suggestions for future RES campaigns.


Geophysical Research Letters | 2012

Rapid subglacial erosion beneath Pine Island Glacier, West Antarctica

Andrew M. Smith; Charles R. Bentley; Robert G. Bingham; Tom A. Jordan

We present measurements of ice thickness, gravimetry and surface elevation on Pine Island Glacier, West Antarctica, separated by a period of 49 years. At one station, on the main trunk of the glacier we measured a surface elevation lowering with no significant change in ice thickness. We interpret these as indicating subglacial erosion of 31.8 � 13.4 m at this location, at a mean rate over the measurement period of 0.6 � 0.3 m a�1, and suggest that a current erosion rate of �1 m a�1 is possible. Our results emphasize that locally, basal processes can have a significant effect on ice sheet changes, particularly where fast-flowing ice has an easily erodible bed.


Geophysical Research Letters | 2016

Four-decade record of pervasive grounding line retreat along the Bellingshausen margin of West Antarctica

Frazer D. W. Christie; Robert G. Bingham; Noel Gourmelen; Simon F. B. Tett; Atsuhiro Muto

Changes to the grounding line, where grounded ice starts to float, can be used as a remotely sensed measure of ice-sheet susceptibility to ocean-forced dynamic thinning. Constraining this susceptibility is vital for predicting Antarcticas contribution to rising sea levels. We use Landsat imagery to monitor grounding line movement over four decades along the Bellingshausen margin of West Antarctica, an area little monitored despite potential for future ice losses. We show that ~65% of the grounding line retreated from 1990 to 2015, with pervasive and accelerating retreat in regions of fast ice flow and/or thinning ice shelves. Venable Ice Shelf confounds expectations in that, despite extensive thinning, its grounding line has undergone negligible retreat. We present evidence that the ice shelf is currently pinned to a sub-ice topographic high which, if breached, could facilitate ice retreat into a significant inland basin, analogous to nearby Pine Island Glacier.

Collaboration


Dive into the Robert G. Bingham's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tom A. Jordan

British Antarctic Survey

View shared research outputs
Top Co-Authors

Avatar

Edward C. King

British Antarctic Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge