Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert G. Fox is active.

Publication


Featured researches published by Robert G. Fox.


Behavioral Neuroscience | 2009

Blockade of the serotonin 5-HT2A receptor suppresses cue-evoked reinstatement of cocaine-seeking behavior in a rat self-administration model.

B.Á. Nic Dhonnchadha; Robert G. Fox; Sonja J. Stutz; K. C. Rice; Kathryn A. Cunningham

The serotonin 5-HT2A receptor (5-HT-sub(2A)R) may play a role in reinstatement of drug-seeking. This study investigated the ability of a selective 5-HT-sub(2A)R antagonist to suppress reinstatement evoked by exposure to cues conditioned to cocaine self-administration. Cocaine self-administration (0.75 mg/kg/0.1 mL/6 s infusion; FR 4) was trained in naïve, free-fed rats to allow interpretation of results independent from changes related to food deprivation stress. Pretreatment with the selective 5-HT-sub(2A)R antagonist M100907 (volinanserin) failed to reduce rates of operant responding for cocaine infusions. On the other hand, M100907 (0.001-0.8 mg/kg ip) significantly suppressed the cue-induced reinstatement of cocaine-seeking behavior following extinction; effective M100907 doses did not alter operant responding for cues previously associated with sucrose self-administration. Importantly, a greater magnitude of active lever presses on the initial extinction session (high extinction responders) predicted the maximal susceptibility to M100907-induced suppression of cue-evoked reinstatement. The findings indicate that blockade of the 5-HT-sub(2A)R attenuates the incentive-motivational effects of cocaine-paired cues, particularly in high extinction responders, and suggests that M100907 may afford a therapeutic advance in suppression of cue-evoked craving and/or relapse.


Neuropharmacology | 2011

Selective serotonin 5-HT2C receptor activation suppresses the reinforcing efficacy of cocaine and sucrose but differentially affects the incentive-salience value of cocaine- vs. sucrose-associated cues

Kathryn A. Cunningham; Robert G. Fox; Noelle C. Anastasio; Marcy J. Bubar; Sonja J. Stutz; F. Gerard Moeller; Scott R. Gilbertson; Sharon Rosenzweig-Lipson

Serotonin (5-HT) controls affective and motivational aspects of palatable food and drug reward and the 5-HT(2C) receptor (5-HT(2C)R) has emerged as a key regulator in this regard. We have evaluated the efficacy of a selective 5-HT(2C)R agonist, WAY 163909, in cocaine and sucrose self-administration and reinstatement assays employing parallel experimental designs in free-fed rats. WAY 163909 dose-dependently reduced the reinforcing efficacy of cocaine (ID(50) = 1.19 mg/kg) and sucrose (ID(50) = 0.7 mg/kg) as well as reinstatement (ID(50) = 0.5 mg/kg) elicited by exposure to cocaine-associated contextual cues, but not sucrose-associated contextual cues. The ID(50) of WAY 163909 predicted to decrease the reinforcing efficacy of cocaine or sucrose as well as reinstatement upon exposure to cocaine-associated cues was ∼5-12-fold lower than that predicted to suppress horizontal ambulation (ID(50) = 5.89 mg/kg) and ∼2-5-fold lower than that predicted to suppress vertical activity (ID(50) = 2.3 mg/kg). Thus, selective stimulation of the 5-HT(2C)R decreases the reinforcing efficacy of cocaine and sucrose in freely-fed rats, but differentially alters the incentive-salience value of cocaine- vs. sucrose-associated cues at doses that do not impair locomotor activity. Future research is needed to tease apart the precise contribution of 5-HT(2C)R neurocircuitry in reward and motivation and the learning and memory processes that carry the encoding for associations between environmental cues and consumption of rewarding stimuli. A more complete preclinical evaluation of these questions will ultimately allow educated proof-of-concept trials to test the efficacy of selective 5-HT(2C)R agonists as adjunctive therapy in chronic health maladies including obesity, eating disorders and drug addiction.


ACS Chemical Neuroscience | 2013

Synergism between a serotonin 5-HT2A receptor (5-HT2AR) antagonist and 5-HT2CR agonist suggests new pharmacotherapeutics for cocaine addiction.

Kathryn A. Cunningham; Noelle C. Anastasio; Robert G. Fox; Sonja J. Stutz; Marcy J. Bubar; Sarah E. Swinford; Cheryl S. Watson; Scott R. Gilbertson; Kenner C. Rice; Sharon Rosenzweig-Lipson; F. Gerard Moeller

Relapse to cocaine dependence, even after extended abstinence, involves a number of liability factors including impulsivity (predisposition toward rapid, unplanned reactions to stimuli without regard to negative consequences) and cue reactivity (sensitivity to cues associated with cocaine-taking which can promote cocaine-seeking). These factors have been mechanistically linked to serotonin (5-hydroxytryptamine, 5-HT) signaling through the 5-HT(2A) receptor (5-HT(2A)R) and 5-HT(2C)R; either a selective 5-HT(2A)R antagonist or a 5-HT(2C)R agonist suppresses impulsivity and cocaine-seeking in preclinical models. We conducted proof-of-concept analyses to evaluate whether a combination of 5-HT(2A)R antagonist plus 5-HT(2C)R agonist would have synergistic effects over these liability factors for relapse as measured in a 1-choice serial reaction time task and cocaine self-administration/reinstatement assay. Combined administration of a dose of the selective 5-HT(2A)R antagonist M100907 plus the 5-HT(2C)R agonist WAY163909, each ineffective alone, synergistically suppressed cocaine-induced hyperactivity, inherent and cocaine-evoked impulsive action, as well as cue- and cocaine-primed reinstatement of cocaine-seeking behavior. The identification of synergism between a 5-HT(2A)R antagonist plus a 5-HT(2C)R agonist to attenuate these factors important in relapse indicates the promise of a bifunctional ligand as an anti-addiction pharmacotherapeutic, setting the stage to develop new ligands with improved efficacy, potency, selectivity, and in vivo profiles over the individual molecules.


Neuropsychopharmacology | 2014

Functional status of the serotonin 5-HT2C receptor (5-HT2CR) drives interlocked phenotypes that precipitate relapse-like behaviors in cocaine dependence.

Noelle C. Anastasio; Sonja J. Stutz; Robert G. Fox; Robert M. Sears; Ronald B. Emeson; Ralph J. DiLeone; Richard T. O'Neil; Latham H. Fink; Dingge Li; Thomas A. Green; F. Gerard Moeller; Kathryn A. Cunningham

Relapse vulnerability in cocaine dependence is rooted in genetic and environmental determinants, and propelled by both impulsivity and the responsivity to cocaine-linked cues (‘cue reactivity’). The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2C receptor (5-HT2CR) within the medial prefrontal cortex (mPFC) is uniquely poised to serve as a strategic nexus to mechanistically control these behaviors. The 5-HT2CR functional capacity is regulated by a number of factors including availability of active membrane receptor pools, the composition of the 5-HT2CR macromolecular protein complex, and editing of the 5-HT2CR pre-mRNA. The one-choice serial reaction time (1-CSRT) task was used to identify impulsive action phenotypes in an outbred rat population before cocaine self-administration and assessment of cue reactivity in the form of lever presses reinforced by the cocaine-associated discrete cue complex during forced abstinence. The 1-CSRT task reliably and reproducibly identified high impulsive (HI) and low impulsive (LI) action phenotypes; HI action predicted high cue reactivity. Lower cortical 5-HT2CR membrane protein levels concomitant with higher levels of 5-HT2CR:postsynaptic density 95 complex distinguished HI rats from LI rats. The frequency of edited 5-HT2CR mRNA variants was elevated with the prediction that the protein population in HI rats favors those isoforms linked to reduced signaling capacity. Genetic loss of the mPFC 5-HT2CR induced aggregate impulsive action/cue reactivity, suggesting that depressed cortical 5-HT2CR tone confers vulnerability to these interlocked behaviors. Thus, impulsive action and cue reactivity appear to neuromechanistically overlap in rodents, with the 5-HT2CR functional status acting as a neural rheostat to regulate, in part, the intersection between these vulnerability behaviors.


Behavioural Pharmacology | 2011

Serotonin (5-hydroxytryptamine) 5-HT2A receptor: Association with inherent and cocaine-evoked behavioral disinhibition in rats

Noelle C. Anastasio; Erin C. Stoffel; Robert G. Fox; Marcy J. Bubar; Kenner C. Rice; F.G. Moeller; Kathryn A. Cunningham

Alterations in the balance of functional activity within the serotonin [5-hydroxytryptamine (5-HT)] system are hypothesized to underlie impulse control. Cocaine-dependent subjects consistently show greater impulsivity relative to nondrug using control subjects. Preclinical studies suggest that the 5-HT2A receptor (5-HT2AR) contributes to the regulation of impulsive behavior and also mediates some of the behavioral effects of cocaine. We hypothesized that the selective 5-HT2AR antagonist M100907 would reduce inherent levels of impulsivity and attenuate impulsive responding induced by cocaine in two animal models of impulsivity, the differential reinforcement of low rate (DRL) task and the one-choice serial reaction time (1-CSRT) task. M100907 reduced rates of responding in the DRL task and premature responding in the 1-CSRT task. Conversely, cocaine disrupted rates of responding in the DRL task and increased premature responding in the 1-CSRT task. M100907 attenuated cocaine-induced increases in specific markers of behavioral disinhibition in the DRL and 1-CSRT tasks. These results suggest that the 5-HT2AR regulates inherent impulsivity, and that blockade of the 5-HT2AR alleviates specific aspects of elevated levels of impulsivity induced by cocaine exposure. These data point to the 5-HT2AR as an important regulatory substrate in impulse control.


Frontiers in Psychiatry | 2012

Forced Abstinence from Cocaine Self-Administration is Associated with DNA Methylation Changes in Myelin Genes in the Corpus Callosum: a Preliminary Study.

David A. Nielsen; Wen Huang; Sara C. Hamon; Lorena Maili; Brian M. Witkin; Robert G. Fox; Kathryn A. Cunningham; F. Gerard Moeller

Background: Human cocaine abuse is associated with alterations in white matter integrity revealed upon brain imaging, an observation that is recapitulated in an animal model of continuous cocaine exposure. The mechanism through which cocaine may affect white matter is unknown and the present study tested the hypothesis that cocaine self-administration results in changes in DNA methylation that could result in altered expression of several myelin genes that could contribute to the effects of cocaine on white matter integrity. Methods: In the present study, we examined the impact of forced abstinence from cocaine self-administration on chromatin associated changes in white matter. To this end, rats were trained to self-administer cocaine (0.75 mg/kg/0.1 mL infusion) for 14 days followed by forced abstinence for 1 day (n = 6) or 30 days (n = 6) before sacrifice. Drug-free, sham surgery controls (n = 7) were paired with the experimental groups. Global DNA methylation and DNA methylation at specific CpG sites in the promoter regions ofmyelin basic protein (Mbp), proteolipid protein-1 (Plp1), and SRY-related HMG-box-10 (Sox10) genes were analyzed in DNA extracted from corpus callosum. Results: Significant differences in the overall methylation patterns of the Sox10 promoter region were observed in the corpus callosum of rats at 30 days of forced abstinence from cocaine self-administration relative to sham controls; the −189, −142, −93, and −62 CpG sites were significantly hypomethylated point-wise at this time point. After correction for multiple comparisons, no differences in global methylation or the methylation patterns of Mbp or Plp1 were found. Conclusion: Forced abstinence from cocaine self-administration was associated with differences in DNA methylation at specific CpG sites in the promoter region of the Sox10 gene in corpus callosum. These changes may be related to reductions in normal age related changes in DNA methylation and could be a factor in white matter alterations seen after withdrawal from repeated cocaine self-administration. Further research is warranted examining the effects of cocaine on DNA methylation in white matter.


Neuropsychopharmacology | 2015

Individual Differences in Impulsive Action Reflect Variation in the Cortical Serotonin 5-HT2A Receptor System

Latham Hl Fink; Noelle C. Anastasio; Robert G. Fox; Kenner C. Rice; F. Gerard Moeller; Kathryn A. Cunningham

Impulsivity is an important feature of multiple neuropsychiatric disorders, and individual variation in the degree of inherent impulsivity could play a role in the generation or exacerbation of problematic behaviors. Serotonin (5-HT) actions at the 5-HT2AR receptor (5-HT2AR) promote and 5-HT2AR antagonists suppress impulsive action (the inability to withhold premature responses; motor impulsivity) upon systemic administration or microinfusion directly into the medial prefrontal cortex (mPFC), a node in the corticostriatal circuit that is thought to play a role in the regulation of impulsive action. We hypothesized that the functional capacity of the 5-HT2AR, which is governed by its expression, localization, and protein/protein interactions (eg, postsynaptic density 95 (PSD95)), may drive the predisposition to inherent impulsive action. Stable high-impulsive (HI) and low-impulsive (LI) phenotypes were identified from an outbred rodent population with the 1-choice serial reaction time (1-CSRT) task. HI rats exhibited a greater head-twitch response following administration of the preferential 5-HT2AR agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) and were more sensitive to the effects of the selective 5-HT2AR antagonist M100907 to suppress impulsive action relative to LI rats. A positive correlation was observed between levels of premature responses and 5-HT2AR binding density in frontal cortex ([3H]-ketanserin radioligand binding). Elevated mPFC 5-HT2AR protein expression concomitant with augmented association of the 5-HT2AR with PSD95 differentiated HI from LI rats. The observed differential sensitivity of HI and LI rats to 5-HT2AR ligands and associated distinct 5-HT2AR protein profiles provide evidence that spontaneously occurring individual differences in impulsive action reflect variation in the cortical 5-HT2AR system.


Translational Psychiatry | 2014

Variation within the serotonin (5-HT) 5-HT2C receptor system aligns with vulnerability to cocaine cue reactivity

Noelle C. Anastasio; Shijing Liu; Lorena Maili; Se Swinford; Scott D. Lane; Robert G. Fox; Sara C. Hamon; D. A. Nielsen; Kathryn A. Cunningham; F.G. Moeller

Cocaine dependence remains a challenging public health problem with relapse cited as a major determinant in its chronicity and severity. Environmental contexts and stimuli become reliably associated with its use leading to durable conditioned responses (‘cue reactivity’) that can predict relapse as well as treatment success. Individual variation in the magnitude and influence of cue reactivity over behavior in humans and animals suggest that cue-reactive individuals may be at greater risk for the progression to addiction and/or relapse. In the present translational study, we investigated the contribution of variation in the serotonin (5-HT) 5-HT2C receptor (5-HT2CR) system in individual differences in cocaine cue reactivity in humans and rodents. We found that cocaine-dependent subjects carrying a single nucleotide polymorphism (SNP) in the HTR2C gene that encodes for the conversion of cysteine to serine at codon 23 (Ser23 variant) exhibited significantly higher attentional bias to cocaine cues in the cocaine-word Stroop task than those carrying the Cys23 variant. In a model of individual differences in cocaine cue reactivity in rats, we identified that high cocaine cue reactivity measured as appetitive approach behavior (lever presses reinforced by the discrete cue complex) correlated with lower 5-HT2CR protein expression in the medial prefrontal cortex and blunted sensitivity to the suppressive effects of the selective 5-HT2CR agonist WAY163909. Our translational findings suggest that the functional status of the 5-HT2CR system is a mechanistic factor in the generation of vulnerability to cocaine-associated cues, an observation that opens new avenues for future development of biomarker and therapeutic approaches to suppress relapse in cocaine dependence.


The Journal of Neuroscience | 2013

Peptide Inhibitors Disrupt the Serotonin 5-HT2C Receptor Interaction with Phosphatase and Tensin Homolog to Allosterically Modulate Cellular Signaling and Behavior

Noelle C. Anastasio; Scott R. Gilbertson; Marcy J. Bubar; Anton Agarkov; Sonja J. Stutz; Yow-Jiun Jeng; Nicole M. Bremer; Thressa D. Smith; Robert G. Fox; Sarah E. Swinford; Patricia K. Seitz; Marc N. Charendoff; John W. Craft; Fernanda Laezza; Cheryl S. Watson; James M. Briggs; Kathryn A. Cunningham

Serotonin (5-hydroxytryptamine; 5-HT) signaling through the 5-HT2C receptor (5-HT2CR) is essential in normal physiology, whereas aberrant 5-HT2CR function is thought to contribute to the pathogenesis of multiple neural disorders. The 5-HT2CR interacts with specific protein partners, but the impact of such interactions on 5-HT2CR function is poorly understood. Here, we report convergent cellular and behavioral data that the interaction between the 5-HT2CR and protein phosphatase and tensin homolog (PTEN) serves as a regulatory mechanism to control 5-HT2CR-mediated biology but not that of the closely homologous 5-HT2AR. A peptide derived from the third intracellular loop of the human 5-HT2CR [3L4F (third loop, fourth fragment)] disrupted the association, allosterically augmented 5-HT2CR-mediated signaling in live cells, and acted as a positive allosteric modulator in rats in vivo. We identified the critical residues within an 8 aa fragment of the 3L4F peptide that maintained efficacy (within the picomolar range) in live cells similar to that of the 3L4F peptide. Last, molecular modeling identified key structural features and potential interaction sites of the active 3L4F peptides against PTEN. These compelling data demonstrate the specificity and importance of this protein assembly in cellular events and behaviors mediated by 5-HT2CR signaling and provide a chemical guidepost to the future development of drug-like peptide or small-molecule inhibitors as neuroprobes to study 5-HT2CR allostery and therapeutics for 5-HT2CR-mediated disorders.


Addiction Biology | 2018

PPARγ agonism attenuates cocaine cue reactivity

William R. Miller; Robert G. Fox; Sonja J. Stutz; Scott D. Lane; Larry Denner; Kathryn A. Cunningham; Kelly T. Dineley

Cocaine use disorder is a chronic relapsing condition characterized by compulsive drug seeking and taking even after prolonged abstinence periods. Subsequent exposure to drug‐associated cues can promote intense craving and lead to relapse in abstinent humans and rodent models. The responsiveness to these cocaine‐related cues, or ‘cue reactivity’, can trigger relapse and cocaine‐seeking behaviors; cue reactivity is measurable in cocaine‐dependent humans as well as rodent models. Cue reactivity is thought to be predictive of cocaine craving and relapse. Here we report that PPARγ agonism during abstinence from cocaine self‐administration reduced previously active lever pressing in Sprague Dawley rats during cue‐reactivity tests, while administration of the PPARγ antagonist, GW9662, reversed this effect. PPARγ agonism also normalized nuclear ERK activity in the medial prefrontal cortex and hippocampus which was reversed with GW9662. Our results support the utility of PPARγ agonism as a relapse prevention strategy to maintain abstinence in the presence of cocaine‐associated cues.

Collaboration


Dive into the Robert G. Fox's collaboration.

Top Co-Authors

Avatar

Kathryn A. Cunningham

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Noelle C. Anastasio

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Sonja J. Stutz

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Gerard Moeller

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Marcy J. Bubar

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

F.G. Moeller

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Kenner C. Rice

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Cheryl S. Watson

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Claudia Soto

University of Texas Medical Branch

View shared research outputs
Researchain Logo
Decentralizing Knowledge