Robert G. Mannino
Emory University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert G. Mannino.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Yongzhi Qiu; Ashley C. Brown; David R. Myers; Yumiko Sakurai; Robert G. Mannino; Reginald Tran; Byungwook Ahn; Elaissa T. Hardy; Matthew F. Kee; Sanjay Kumar; Gang Bao; Thomas H. Barker; Wilbur A. Lam
Significance Platelets are cell fragments in the blood that initiate clot formation at the site of bleeding. Although the biological aspects of this process have been well characterized, whether platelets can detect and physiologically respond to the mechanical aspects of its local environment is unclear. Here, we show that platelets sense the stiffness of the underlying clot substrate, and increasing substrate stiffness increases platelet adhesion and spreading. Importantly, adhesion on stiffer substrates leads to higher levels of platelet activation. Mechanistically, we determined that Rac1, actin, and myosin activity mediate this process. This newfound capability of how platelets adjust their degree of activation based on the mechanical properties of their environment provides new insight into how clots are formed. As platelets aggregate and activate at the site of vascular injury to stem bleeding, they are subjected to a myriad of biochemical and biophysical signals and cues. As clot formation ensues, platelets interact with polymerizing fibrin scaffolds, exposing platelets to a large range of mechanical microenvironments. Here, we show for the first time (to our knowledge) that platelets, which are anucleate cellular fragments, sense microenvironmental mechanical properties, such as substrate stiffness, and transduce those cues into differential biological signals. Specifically, as platelets mechanosense the stiffness of the underlying fibrin/fibrinogen substrate, increasing substrate stiffness leads to increased platelet adhesion and spreading. Importantly, adhesion on stiffer substrates also leads to higher levels of platelet activation, as measured by integrin αIIbβ3 activation, α-granule secretion, and procoagulant activity. Mechanistically, we determined that Rac1 and actomyosin activity mediate substrate stiffness-dependent platelet adhesion, spreading, and activation to different degrees. This capability of platelets to mechanosense microenvironmental cues in a growing thrombus or hemostatic plug and then mechanotransduce those cues into differential levels of platelet adhesion, spreading, and activation provides biophysical insight into the underlying mechanisms of platelet aggregation and platelet activation heterogeneity during thrombus formation.
Scientific Reports | 2015
Robert G. Mannino; David R. Myers; Byungwook Ahn; Yichen Wang; Margo Rollins; Hope Gole; Angela S. Lin; Robert E. Guldberg; Don P. Giddens; Lucas H. Timmins; Wilbur A. Lam
Investigating biophysical cellular interactions in the circulation currently requires choosing between in vivo models, which are difficult to interpret due in part to the hemodynamic and geometric complexities of the vasculature; or in vitro systems, which suffer from non-physiologic assumptions and/or require specialized microfabrication facilities and expertise. To bridge that gap, we developed an in vitro “do-it-yourself” perfusable vasculature model that recapitulates in vivo geometries, such as aneurysms, stenoses, and bifurcations, and supports endothelial cell culture. These inexpensive, disposable devices can be created rapidly (<2 hours) with high precision and repeatability, using standard off-the-shelf laboratory supplies. Using these “endothelialized” systems, we demonstrate that spatial variation in vascular cell adhesion molecule (VCAM-1) expression correlates with the wall shear stress patterns of vascular geometries. We further observe that the presence of endothelial cells in stenoses reduces platelet adhesion but increases sickle cell disease (SCD) red blood cell (RBC) adhesion in bifurcations. Overall, our method enables researchers from all disciplines to study cellular interactions in physiologically relevant, yet simple-to-make, in vitro vasculature models.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Meredith E. Fay; David R. Myers; Amit Kumar; Cory Turbyfield; Rebecca Byler; Kaci Crawford; Robert G. Mannino; Alvin Laohapant; Erika A. Tyburski; Yumiko Sakurai; Michael J. Rosenbluth; Neil A. Switz; Todd Sulchek; Michael D. Graham; Wilbur A. Lam
Significance Clinical hematologists have long known that antiinflammatory glucocorticoids such as dexamethasone and blood pressure-supporting catecholamines such as epinephrine cause leukocytes to demarginate from the vascular wall and microvasculature into the main circulation, significantly elevating the effective white blood cell count. Canonically, this has been attributed to down-regulation of adhesion molecules such as selectins, but we show that a purely mechanical phenomenon caused by leukocyte softening plays a major role as well. Our work provides an answer to an old hematological problem and reveals a mechanism in which the immune system simply alters leukocyte stiffness to regulate leukocyte trafficking. This has clinically relevant implications for the inflammatory process overall as well as for hematopoietic stem cell mobilization and homing. Leukocytes normally marginate toward the vascular wall in large vessels and within the microvasculature. Reversal of this process, leukocyte demargination, leads to substantial increases in the clinical white blood cell and granulocyte count and is a well-documented effect of glucocorticoid and catecholamine hormones, although the underlying mechanisms remain unclear. Here we show that alterations in granulocyte mechanical properties are the driving force behind glucocorticoid- and catecholamine-induced demargination. First, we found that the proportions of granulocytes from healthy human subjects that traversed and demarginated from microfluidic models of capillary beds and veins, respectively, increased after the subjects ingested glucocorticoids. Also, we show that glucocorticoid and catecholamine exposure reorganizes cellular cortical actin, significantly reducing granulocyte stiffness, as measured with atomic force microscopy. Furthermore, using simple kinetic theory computational modeling, we found that this reduction in stiffness alone is sufficient to cause granulocyte demargination. Taken together, our findings reveal a biomechanical answer to an old hematologic question regarding how glucocorticoids and catecholamines cause leukocyte demargination. In addition, in a broader sense, we have discovered a temporally and energetically efficient mechanism in which the innate immune system can simply alter leukocyte stiffness to fine tune margination/demargination and therefore leukocyte trafficking in general. These observations have broad clinically relevant implications for the inflammatory process overall as well as hematopoietic stem cell mobilization and homing.
Journal of Clinical Investigation | 2014
Erika A. Tyburski; Scott Gillespie; William Stoy; Robert G. Mannino; Alexander Weiss; Alexa F. Siu; Rayford H. Bulloch; Karthik Thota; Anyela Cardenas; Wilena Session; Hanna Jean Khoury; Siobhán O’Connor; Silvia T. Bunting; Jeanne Boudreaux; Craig R. Forest; Manila Gaddh; Traci Leong; L. Andrew Lyon; Wilbur A. Lam
BACKGROUND Anemia, or low blood hemoglobin (Hgb) levels, afflicts 2 billion people worldwide. Currently, Hgb levels are typically measured from blood samples using hematology analyzers, which are housed in hospitals, clinics, or commercial laboratories and require skilled technicians to operate. A reliable, inexpensive point-of-care (POC) Hgb test would enable cost-effective anemia screening and chronically anemic patients to self-monitor their disease. We present a rapid, stand-alone, and disposable POC anemia test that, via a single drop of blood, outputs color-based visual results that correlate with Hgb levels. METHODS We tested blood from 238 pediatric and adult patients with anemia of varying degrees and etiologies and compared hematology analyzer Hgb levels with POC Hgb levels, which were estimated via visual interpretation using a color scale and an optional smartphone app for automated analysis. RESULTS POC Hgb levels correlated with hematology analyzer Hgb levels (r = 0.864 and r = 0.856 for visual interpretation and smartphone app, respectively), and both POC test methods yielded comparable sensitivity and specificity for detecting any anemia (n = 178) (<11 g/dl) (sensitivity: 90.2% and 91.1%, specificity: 83.7% and 79.2%, respectively) and severe anemia (n = 10) (<7 g/dl) (sensitivity: 90.0% and 100%, specificity: 94.6% and 93.9%, respectively). CONCLUSIONS These results demonstrate the feasibility of this POC color-based diagnostic test for self-screening/self-monitoring of anemia. TRIAL REGISTRATION Not applicable. FUNDING This work was funded by the FDA-funded Atlantic Pediatric Device Consortium, the Georgia Research Alliance, Childrens Healthcare of Atlanta, the Georgia Center of Innovation for Manufacturing, and the InVenture Prize and Ideas to Serve competitions at the Georgia Institute of Technology.
Nature Materials | 2017
David R. Myers; Yongzhi Qiu; Meredith E. Fay; Michael Tennenbaum; Daniel Chester; Jonas Cuadrado; Yumiko Sakurai; Jong Baek; Reginald Tran; Jordan C. Ciciliano; Byungwook Ahn; Robert G. Mannino; Silvia T. Bunting; Carolyn M. Bennett; Michael Briones; Alberto Fernandez-Nieves; Michael L. Smith; Ashley C. Brown; Todd Sulchek; Wilbur A. Lam
Haemostasis occurs at sites of vascular injury, where flowing blood forms a clot, a dynamic and heterogeneous fibrin-based biomaterial. Paramount in the clot’s capability to stem haemorrhage are its changing mechanical properties, the major driver of which are the contractile forces exerted by platelets against the fibrin scaffold 1. However, how platelets transduce microenvironmental cues to mediate contraction and alter clot mechanics is unknown. This is clinically relevant, as overly softened and stiffened clots are associated with bleeding 2 and thrombotic disorders 3. Here, we report a high-throughput hydrogel based platelet-contraction cytometer that quantifies single-platelet contraction forces in different clot microenvironments. We also show that platelets, via the Rho/ROCK pathway, synergistically couple mechanical and biochemical inputs to mediate contraction. Moreover, highly contractile platelet subpopulations present in healthy controls are conspicuously absent in a subset of patients with undiagnosed bleeding disorders, and therefore may function as a clinical diagnostic biophysical biomarker.
Nature Communications | 2018
Yumiko Sakurai; Elaissa T. Hardy; Byungwook Ahn; Reginald Tran; Meredith E. Fay; Jordan C. Ciciliano; Robert G. Mannino; David R. Myers; Yongzhi Qiu; Marcus A. Carden; W. Hunter Baldwin; Shannon L. Meeks; Gary E. Gilbert; Shawn M Jobe; Wilbur A. Lam
Hemostasis encompasses an ensemble of interactions among platelets, coagulation factors, blood cells, endothelium, and hemodynamic forces, but current assays assess only isolated aspects of this complex process. Accordingly, here we develop a comprehensive in vitro mechanical injury bleeding model comprising an “endothelialized” microfluidic system coupled with a microengineered pneumatic valve that induces a vascular “injury”. With perfusion of whole blood, hemostatic plug formation is visualized and “in vitro bleeding time” is measured. We investigate the interaction of different components of hemostasis, gaining insight into several unresolved hematologic issues. Specifically, we visualize and quantitatively demonstrate: the effect of anti-platelet agent on clot contraction and hemostatic plug formation, that von Willebrand factor is essential for hemostasis at high shear, that hemophilia A blood confers unstable hemostatic plug formation and altered fibrin architecture, and the importance of endothelial phosphatidylserine in hemostasis. These results establish the versatility and clinical utility of our microfluidic bleeding model.Hemostasis is a complex ensemble of events, but current bleeding assays only analyze single components like coagulation or platelet function. Here the authors present a comprehensive vascularized microfluidic mechanical injury bleeding model that addresses different aspects of the hemostatic process.
Nature Biomedical Engineering | 2018
Yongzhi Qiu; Byungwook Ahn; Yumiko Sakurai; Caroline E. Hansen; Reginald Tran; Patrice N. Mimche; Robert G. Mannino; Jordan C. Ciciliano; Tracey J. Lamb; Clinton H. Joiner; Solomon F. Ofori-Acquah; Wilbur A. Lam
Alterations in the mechanical properties of erythrocytes occurring in inflammatory and haematological disorders such as sickle-cell disease (SCD) and malaria often lead to increased endothelial permeability, haemolysis and microvascular obstruction. However, the associations among these pathological phenomena remain unknown. Here, we show that a perfusable, endothelialized microvasculature-on-a-chip featuring an interpenetrating-polymer-network hydrogel that recapitulates the stiffness of blood vessel intima, basement membrane self-deposition and self-healing endothelial barrier function for longer than one month enables the real-time visualization, with high spatiotemporal resolution, of microvascular obstruction and endothelial permeability under physiological flow conditions. We found that extracellular haem—a haemolytic by-product—induces delayed yet reversible endothelial permeability in a dose-dependent manner, and demonstrate that endothelial interactions with SCD or malaria-infected erythrocytes cause reversible microchannel occlusion and increased in situ endothelial permeability. The microvasculature-on-a-chip enables mechanistic insight into the endothelial barrier dysfunction associated with SCD, malaria and other inflammatory and haematological diseases.An endothelialized microfluidic system that recapitulates physiological properties of the microvasculature enables the real-time visualization of vascular-pathology features associated with sickle-cell disease and malaria, with high spatiotemporal resolution.
Lab on a Chip | 2017
Robert G. Mannino; Adriana Santiago-Miranda; Pallab Pradhan; Yongzhi Qiu; Joscelyn C. Mejias; Sattva S. Neelapu; Krishnendu Roy; Wilbur A. Lam
Diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer that affects ∼22 000 people in the United States yearly. Understanding the complex cellular interactions of the tumor microenvironment is critical to the success and development of DLBCL treatment strategies. In vitro platforms that successfully model the complex tumor microenvironment without introducing the variability of in vivo systems are vital for understanding these interactions. To date, no such in vitro model exists that can accurately recapitulate the interactions that occur between immune cells, cancer cells, and endothelial cells in the tumor microenvironment of DLBCL. To that end, we developed a lymphoma-on-chip model consisting of a hydrogel based tumor model traversed by a vascularized, perfusable, round microchannel that successfully recapitulates key complexities and interactions of the in vivo tumor microenvironment in vitro. We have shown that the perfusion capabilities of this technique allow us to study targeted treatment strategies, as well as to model the diffusion of infused reagents spatiotemporally. Furthermore, this model employs a novel fabrication technique that utilizes common laboratory materials, and allows for the microfabrication of multiplex microvascular environments without the need for advanced microfabrication facilities. Through our facile microfabrication process, we are able to achieve micro vessels within a tumor model that are highly reliable and precise over the length of the vessel. Overall, we have developed a tool that enables researchers from many diverse disciplines to study previously inaccessible aspects of the DLBCL tumor microenvironment, with profound implications for drug delivery and design.
Archive | 2018
Robert G. Mannino; Pallab Pradhan; Krishnendu Roy; Wilbur A. Lam
Diffuse large B-cell lymphoma (DLBCL) is a particularly aggressive cancer, impacting the lives of approximately 20,000 people annually in the United States. Elucidating cellular interactions that occur within the microenvironment of DLBCL tumors is crucial to the successful development of therapeutic strategies for this condition. As the in vivo microenvironment of DLBCL is quite complex and variable, in vitro platforms that can sufficiently recapitulate these multifaceted cellular interactions without introducing the complexities of in vivo systems are vital for understanding the pathophysiology of this disease. In this chapter, we present a method for fabrication and development of an in vitro DLBCL-on-chip model in which a fully vascularized, perfusable, microfluidic traverses a DLBCL tumor cell-laden hydrogel that successfully recapitulates hallmark attributes and cellular interaction that occur within the DLBCL tumor microenvironment. As this microfluidic approach makes use of common laboratory items and does not require traditional photolithography to fabricate, this system represents a vital tool that can unlock previously inaccessible research areas of the DLBCL tumor microenvironment to researchers across numerous fields.
Biophysical Journal | 2018
Dhanya T. Jayaram; Samantha M. Pustulka; Robert G. Mannino; Wilbur A. Lam; Christine K. Payne
Nanoparticles used in cellular applications encounter free serum proteins that adsorb onto the surface of the nanoparticle, forming a protein corona. This protein layer controls the interaction of nanoparticles with cells. For nanomedicine applications, it is important to consider how intravenous injection and the subsequent shear flow will affect the protein corona. Our goal was to determine if shear flow changed the composition of the protein corona and if these changes affected cellular binding. Colorimetric assays of protein concentration and gel electrophoresis demonstrate that polystyrene nanoparticles subjected to flow have a greater concentration of serum proteins adsorbed on the surface, especially plasminogen. Plasminogen, in the absence of nanoparticles, undergoes changes in structure in response to flow, characterized by fluorescence and circular dichroism spectroscopy. The protein-nanoparticle complexes formed from fetal bovine serum after flow had decreased cellular binding, as measured with flow cytometry. In addition to the relevance for nanomedicine, these results also highlight the technical challenges of protein corona studies. The composition of the protein corona was highly dependent on the initial mixing step: rocking, vortexing, or flow. Overall, these results reaffirm the importance of the protein corona in nanoparticle-cell interactions and point toward the challenges of predicting corona composition based on nanoparticle properties.