Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert G. Nichols is active.

Publication


Featured researches published by Robert G. Nichols.


Journal of Clinical Investigation | 2015

Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease

Changtao Jiang; Cen Xie; Fei Li; Limin Zhang; Robert G. Nichols; Kristopher W. Krausz; Jingwei Cai; Yunpeng Qi; Zhong-Ze Fang; Shogo Takahashi; Naoki Tanaka; Dhimant Desai; Shantu Amin; Istvan Albert; Andrew D. Patterson; Frank J. Gonzalez

Nonalcoholic fatty liver disease (NAFLD) is a major worldwide health problem. Recent studies suggest that the gut microbiota influences NAFLD pathogenesis. Here, a murine model of high-fat diet-induced (HFD-induced) NAFLD was used, and the effects of alterations in the gut microbiota on NAFLD were determined. Mice treated with antibiotics or tempol exhibited altered bile acid composition, with a notable increase in conjugated bile acid metabolites that inhibited intestinal farnesoid X receptor (FXR) signaling. Compared with control mice, animals with intestine-specific Fxr disruption had reduced hepatic triglyceride accumulation in response to a HFD. The decrease in hepatic triglyceride accumulation was mainly due to fewer circulating ceramides, which was in part the result of lower expression of ceramide synthesis genes. The reduction of ceramide levels in the ileum and serum in tempol- or antibiotic-treated mice fed a HFD resulted in downregulation of hepatic SREBP1C and decreased de novo lipogenesis. Administration of C16:0 ceramide to antibiotic-treated mice fed a HFD reversed hepatic steatosis. These studies demonstrate that inhibition of an intestinal FXR/ceramide axis mediates gut microbiota-associated NAFLD development, linking the microbiome, nuclear receptor signaling, and NAFLD. This work suggests that inhibition of intestinal FXR is a potential therapeutic target for NAFLD treatment.


Environmental Health Perspectives | 2015

Persistent Organic Pollutants Modify Gut Microbiota-Host Metabolic Homeostasis in Mice Through Aryl Hydrocarbon Receptor Activation.

Limin Zhang; Robert G. Nichols; Jared B. Correll; Iain A. Murray; Naoki Tanaka; Philip B. Smith; Troy D. Hubbard; Aswathy Sebastian; Istvan Albert; Emmanuel Hatzakis; Frank J. Gonzalez; Gary H. Perdew; Andrew D. Patterson

Background Alteration of the gut microbiota through diet and environmental contaminants may disturb physiological homeostasis, leading to various diseases including obesity and type 2 diabetes. Because most exposure to environmentally persistent organic pollutants (POPs) occurs through the diet, the host gastrointestinal tract and commensal gut microbiota are likely to be exposed to POPs. Objectives We examined the effect of 2,3,7,8-tetrachlorodibenzofuran (TCDF), a persistent environmental contaminant, on gut microbiota and host metabolism, and we examined correlations between gut microbiota composition and signaling pathways. Methods Six-week-old male wild-type and Ahr–/– mice on the C57BL/6J background were treated with 24 μg/kg TCDF in the diet for 5 days. We used 16S rRNA gene sequencing, 1H nuclear magnetic resonance (NMR) metabolomics, targeted ultra-performance liquid chromatography coupled with triplequadrupole mass spectrometry, and biochemical assays to determine the microbiota compositions and the physiological and metabolic effects of TCDF. Results Dietary TCDF altered the gut microbiota by shifting the ratio of Firmicutes to Bacteroidetes. TCDF-treated mouse cecal contents were enriched with Butyrivibrio spp. but depleted in Oscillobacter spp. compared with vehicle-treated mice. These changes in the gut microbiota were associated with altered bile acid metabolism. Further, dietary TCDF inhibited the farnesoid X receptor (FXR) signaling pathway, triggered significant inflammation and host metabolic disorders as a result of activation of bacterial fermentation, and altered hepatic lipogenesis, gluconeogenesis, and glycogenolysis in an AHR-dependent manner. Conclusion These findings provide new insights into the biochemical consequences of TCDF exposure involving the alteration of the gut microbiota, modulation of nuclear receptor signaling, and disruption of host metabolism. Citation Zhang L, Nichols RG, Correll J, Murray IA, Tanaka N, Smith PB, Hubbard TD, Sebastian A, Albert I, Hatzakis E, Gonzalez FJ, Perdew GH, Patterson AD. 2015. Persistent organic pollutants modify gut microbiota–host metabolic homeostasis in mice through aryl hydrocarbon receptor activation. Environ Health Perspect 123:679–688; http://dx.doi.org/10.1289/ehp.1409055


mSystems | 2016

Farnesoid X Receptor Signaling Shapes the Gut Microbiota and Controls Hepatic Lipid Metabolism

Limin Zhang; Cen Xie; Robert G. Nichols; Siu Hung Joshua Chan; Changtao Jiang; Ruixin Hao; Philip B. Smith; Jingwei Cai; Margaret Simons; Emmanuel Hatzakis; Costas D. Maranas; Frank J. Gonzalez; Andrew D. Patterson

The farnesoid X receptor (FXR) plays an important role in mediating the dialog between the host and gut microbiota, particularly through modulation of enterohepatic circulation of bile acids. Mounting evidence suggests that genetic ablation of Fxr in the gut or gut-restricted chemical antagonism of the FXR promotes beneficial health effects, including the prevention of nonalcoholic fatty liver disease in rodent models. However, questions remain unanswered, including whether modulation of FXR activity plays a role in shaping the gut microbiota community structure and function and what metabolic pathways of the gut microbiota contribute in an FXR-dependent manner to the host phenotype. In this report, new insights are gained into the metabolic contribution of the gut microbiota to the metabolic phenotypes, including establishing a link between FXR antagonism, bacterial bile salt hydrolase activity, and fermentation. Multiple approaches, including unique mouse models as well as metabolomics and genome-scale metabolic models, were employed to confirm these results. ABSTRACT The gut microbiota modulates obesity and associated metabolic phenotypes in part through intestinal farnesoid X receptor (FXR) signaling. Glycine-β-muricholic acid (Gly-MCA), an intestinal FXR antagonist, has been reported to prevent or reverse high-fat diet (HFD)-induced and genetic obesity, insulin resistance, and fatty liver; however, the mechanism by which these phenotypes are improved is not fully understood. The current study investigated the influence of FXR activity on the gut microbiota community structure and function and its impact on hepatic lipid metabolism. Predictions about the metabolic contribution of the gut microbiota to the host were made using 16S rRNA-based PICRUSt (phylogenetic investigation of communities by reconstruction of unobserved states), then validated using 1H nuclear magnetic resonance-based metabolomics, and results were summarized by using genome-scale metabolic models. Oral Gly-MCA administration altered the gut microbial community structure, notably reducing the ratio of Firmicutes to Bacteroidetes and its PICRUSt-predicted metabolic function, including reduced production of short-chain fatty acids (substrates for hepatic gluconeogenesis and de novo lipogenesis) in the ceca of HFD-fed mice. Metabolic improvement was intestinal FXR dependent, as revealed by the lack of changes in HFD-fed intestine-specific Fxr-null (FxrΔIE) mice treated with Gly-MCA. Integrative analyses based on genome-scale metabolic models demonstrated an important link between Lactobacillus and Clostridia bile salt hydrolase activity and bacterial fermentation. Hepatic metabolite levels after Gly-MCA treatment correlated with altered levels of gut bacterial species. In conclusion, modulation of the gut microbiota by inhibition of intestinal FXR signaling alters host liver lipid metabolism and improves obesity-related metabolic dysfunction. IMPORTANCE The farnesoid X receptor (FXR) plays an important role in mediating the dialog between the host and gut microbiota, particularly through modulation of enterohepatic circulation of bile acids. Mounting evidence suggests that genetic ablation of Fxr in the gut or gut-restricted chemical antagonism of the FXR promotes beneficial health effects, including the prevention of nonalcoholic fatty liver disease in rodent models. However, questions remain unanswered, including whether modulation of FXR activity plays a role in shaping the gut microbiota community structure and function and what metabolic pathways of the gut microbiota contribute in an FXR-dependent manner to the host phenotype. In this report, new insights are gained into the metabolic contribution of the gut microbiota to the metabolic phenotypes, including establishing a link between FXR antagonism, bacterial bile salt hydrolase activity, and fermentation. Multiple approaches, including unique mouse models as well as metabolomics and genome-scale metabolic models, were employed to confirm these results.


Environmental Science & Technology | 2015

Metabolomics Reveals that Aryl Hydrocarbon Receptor Activation by Environmental Chemicals Induces Systemic Metabolic Dysfunction in Mice

Limin Zhang; Emmanuel Hatzakis; Robert G. Nichols; Ruixin Hao; Jared B. Correll; Philip B. Smith; Christopher R. Chiaro; Gary H. Perdew; Andrew D. Patterson

Environmental exposure to dioxins and dioxin-like compounds poses a significant health risk for human health. Developing a better understanding of the mechanisms of toxicity through activation of the aryl hydrocarbon receptor (AHR) is likely to improve the reliability of risk assessment. In this study, the AHR-dependent metabolic response of mice exposed to 2,3,7,8-tetrachlorodibenzofuran (TCDF) was assessed using global (1)H nuclear magnetic resonance (NMR)-based metabolomics and targeted metabolite profiling of extracts obtained from serum and liver. (1)H NMR analyses revealed that TCDF exposure suppressed gluconeogenesis and glycogenolysis, stimulated lipogenesis, and triggered inflammatory gene expression in an Ahr-dependent manner. Targeted analyses using gas chromatography coupled with mass spectrometry showed TCDF treatment altered the ratio of unsaturated/saturated fatty acids. Consistent with this observation, an increase in hepatic expression of stearoyl coenzyme A desaturase 1 was observed. In addition, TCDF exposure resulted in inhibition of de novo fatty acid biosynthesis manifested by down-regulation of acetyl-CoA, malonyl-CoA, and palmitoyl-CoA metabolites and related mRNA levels. In contrast, no significant changes in the levels of glucose and lipid were observed in serum and liver obtained from Ahr-null mice following TCDF treatment, thus strongly supporting the important role of the AHR in mediating the metabolic effects seen following TCDF exposure.


Journal of Proteome Research | 2015

Modulation of Colon Cancer by Nutmeg

Fei Li; Xiu-Wei Yang; Kristopher W. Krausz; Robert G. Nichols; Wei Xu; Andrew D. Patterson; Frank J. Gonzalez

Colon cancer is the most common cancer and the third leading cause of cancer mortality in humans. Using mass spectrometry-based metabolomics, the current study revealed the accumulation of four uremic toxins (cresol sulfate, cresol glucuronide, indoxyl sulfate, and phenyl sulfate) in the serum of mice harboring adenomatous polyposis coli (APC) gene mutation-induced colon cancer. These uremic toxins, likely generated from the gut microbiota, were associated with an increase in the expression of the proinflammatory cytokine IL-6 and a disorder of lipid metabolism. Nutmeg, which exhibits antimicrobial activity, attenuated the levels of uremic toxins and decreased intestinal tumorigenesis in Apc(min/+) mice. Nutmeg-treated Apc(min/+) mice had decreased IL-6 levels and normalized dysregulated lipid metabolism, suggesting that uremic toxins are responsible, in part, for the metabolic disorders that occur during tumorigenesis. These studies demonstrate a potential biochemical link among gut microbial metabolism, inflammation, and metabolic disorders and suggest that modulation of gut microbiota and lipid metabolism using dietary intervention or drugs may be effective in colon cancer chemoprevention strategies.


Scientific Reports | 2016

Expression of the aryl hydrocarbon receptor contributes to the establishment of intestinal microbial community structure in mice

Iain A. Murray; Robert G. Nichols; Limin Zhang; Andrew D. Patterson; Gary H. Perdew

Environmental and genetic factors represent key components in the establishment/maintenance of the intestinal microbiota. The aryl hydrocarbon receptor (AHR) is emerging as a pleiotropic factor, modulating pathways beyond its established role as a xenobiotic sensor. The AHR is known to regulate immune surveillance within the intestine through retention of intraepithelial lymphocytes, functional redistribution of Th17/Treg balance. Consequently, environmental/genetic manipulation of AHR activity likely influences host-microbe homeostasis. Utilizing C57BL6/J Ahr−/+ and Ahr−/− co-housed littermates followed by 18 days of genotypic segregation, we examined the influence of AHR expression upon intestinal microbe composition/functionality and host physiology. 16S sequencing/quantitative PCR (qPCR) revealed significant changes in phyla abundance, particularly Verrucomicrobia together with segmented filamentous bacteria, and an increase in species diversity in Ahr−/− mice following genotypic segregation. Metagenomics/metabolomics indicate microbial composition is associated with functional shifts in bacterial metabolism. Analysis identified Ahr−/−-dependent increases in ileal gene expression, indicating increased inflammatory tone. Transfer of Ahr−/− microbiota to wild-type germ-free mice recapitulated the increase Verrucomicrobia and inflammatory tone, indicating Ahr−/−-microbial dependence. These data suggest a role for the AHR in influencing the community structure of the intestinal microbiota.


Hepatology | 2018

Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism

Preeti Pathak; Cen Xie; Robert G. Nichols; Jessica M. Ferrell; Shannon Boehme; Kristopher W. Krausz; Andrew D. Patterson; Frank J. Gonzalez; John Y. L. Chiang

Bile acids activate farnesoid X receptor (FXR) and G protein–coupled bile acid receptor‐1 (aka Takeda G protein–coupled receptor‐5 [TGR5]) to regulate bile acid metabolism and glucose and insulin sensitivity. FXR and TGR5 are coexpressed in the enteroendocrine L cells, but their roles in integrated regulation of metabolism are not completely understood. We reported recently that activation of FXR induces TGR5 to stimulate glucagon‐like peptide‐1 (GLP‐1) secretion to improve insulin sensitivity and hepatic metabolism. In this study, we used the intestine‐restricted FXR agonist fexaramine (FEX) to study the effect of activation of intestinal FXR on the gut microbiome, bile acid metabolism, and FXR and TGR5 signaling. The current study revealed that FEX markedly increased taurolithocholic acid, increased secretion of fibroblast growth factors 15 and 21 and GLP‐1, improved insulin and glucose tolerance, and promoted white adipose tissue browning in mice. Analysis of 16S ribosomal RNA sequences of the gut microbiome identified the FEX‐induced and lithocholic acid–producing bacteria Acetatifactor and Bacteroides. Antibiotic treatment completely reversed the FEX‐induced metabolic phenotypes and inhibited taurolithocholic acid synthesis, adipose tissue browning, and liver bile acid synthesis gene expression but further increased intestinal FXR target gene expression. FEX treatment effectively improved lipid profiles, increased GLP‐1 secretion, improved glucose and insulin tolerance, and promoted adipose tissue browning, while antibiotic treatment reversed the beneficial metabolic effects of FEX in obese and diabetic mice. Conclusion: This study uncovered a mechanism in which activation of intestinal FXR shaped the gut microbiota to activate TGR5/GLP‐1 signaling to improve hepatic glucose and insulin sensitivity and increase adipose tissue browning; the gut microbiota plays a critical role in bile acid metabolism and signaling to regulate metabolic homeostasis in health and disease. (Hepatology 2018).


Current Opinion in Toxicology | 2017

The aryl hydrocarbon receptor as a moderator of host-microbiota communication

Limin Zhang; Robert G. Nichols; Andrew D. Patterson

The aryl hydrocarbon receptor (AHR) is an important component of the host-microbiota communication network. Comparisons of wild-type and Ahr-null mice as well as from exposure studies with potent AHR ligands (e.g., 2,3,7,8-tetrachlorodibenzo-p-dioxin) have provided compelling evidence that the AHR may be a master regulator of the host-microbiota interaction thus helping to shape the immune system and impact host metabolism. Metabolomics and sequenced-based microbial community profiling, two recent technological advances, have helped to solidify this host-microbiota signaling concept and identified not only how specific ligands generated by the host and by the microbiota can activate the AHR, but also how activation/disruption of the AHR can influence and shape the microbiota. We are just beginning to understand how the temporal nature and tissue- and microbiota-specific generation of AHR ligands contribute to many AHR-dependent processes. In this review, we focus on several recent advances where metabolomics and characterization of the microbiota structure and function have generated new perspectives by which to evaluate AHR activity.


Journal of Functional Foods | 2017

Dietary broccoli impacts microbial community structure and attenuates chemically induced colitis in mice in an Ah receptor dependent manner

Troy D. Hubbard; Iain A. Murray; Robert G. Nichols; Kaitlyn Cassel; Michael A. Podolsky; Guray Kuzu; Yuan Tian; Phillip Smith; Mary J. Kennett; Andrew D. Patterson; Gary H. Perdew

Consumption of broccoli mediates numerous chemo-protective benefits through the intake of phytochemicals, some of which modulate aryl hydrocarbon receptor (AHR) activity. Whether AHR activation is a critical aspect of the therapeutic potential of dietary broccoli is not known. Here we administered isocaloric diets, with or without supplementation of whole broccoli (15% w/w), to congenic mice expressing the high-affinity Ahrb/b or low-affinity Ahrd/d alleles, for 24 days and examined the effects on AHR activity, intestinal microbial community structure, inflammatory status, and response to chemically induced colitis. Cecal microbial community structure and metabolic potential were segregated according to host dietary and AHR status. Dietary broccoli associated with heightened intestinal AHR activity, decreased microbial abundance of the family Erysipelotrichaceae, and attenuation of colitis. In summary, broccoli consumption elicited an enhanced response in ligand-sensitive Ahrb/b mice, demonstrating that in part the beneficial aspects of dietary broccoli upon intestinal health are associated with heightened AHR activity.


Journal of Nutritional Biochemistry | 2018

Vitamin A deficiency in mice alters host and gut microbial metabolism leading to altered energy homeostasis

Yuan Tian; Robert G. Nichols; Jingwei Cai; Andrew D. Patterson; Margherita T. Cantorna

Vitamin A deficiency (A-) is a worldwide public health problem. To better understand how vitamin A status influences gut microbiota and host metabolism, we systematically analyzed urine, cecum, serum and liver samples from vitamin A sufficient (A+) and deficient (A-) mice using 1H NMR-based metabolomics, quantitative (q)PCR and 16S rRNA gene sequencing coupled with multivariate data analysis. The microbiota in the cecum of A- mice showed compositional as well as functional shifts compared to the microbiota from A+ mice. Targeted 1H NMR analyses revealed significant changes in microbial metabolite concentrations including higher butyrate and hippurate and decreased acetate and 4-hydroxyphenylacetate in A+ relative to A- mice. Bacterial butyrate-producing genes including butyryl-CoA:acetate CoA-transferase and butyrate kinase were significantly higher in bacteria from A+ versus bacteria from A- mice. A- mice had disturbances in multiple metabolic pathways including alterations in energy (hyperglycemia, glycogenesis, TCA cycle and lipoprotein biosynthesis), amino acid and nucleic acid metabolism. A- mice had hyperglycemia, liver dysfunction, changes in bacterial metabolism and altered gut microbial communities. Moreover, integrative analyses indicated a strong correlation between gut microbiota and host energy metabolism pathways in the liver. Vitamin A regulates host and bacterial metabolism, and the result includes alterations in energy homeostasis.

Collaboration


Dive into the Robert G. Nichols's collaboration.

Top Co-Authors

Avatar

Andrew D. Patterson

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Jingwei Cai

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Frank J. Gonzalez

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Cen Xie

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kristopher W. Krausz

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Philip B. Smith

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Gary H. Perdew

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Yuan Tian

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Limin Zhang

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Iain A. Murray

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge