Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Gourlay is active.

Publication


Featured researches published by Robert Gourlay.


Open Biology | 2012

PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65

Agne Kazlauskaite; Ning Zhang; Helen I. Woodroof; David G. Campbell; Robert Gourlay; Lynn Burchell; Helen Walden; Thomas Macartney; Maria Deak; Axel Knebel; Dario R. Alessi; Miratul M. K. Muqit

Summary Missense mutations in PTEN-induced kinase 1 (PINK1) cause autosomal-recessive inherited Parkinsons disease (PD). We have exploited our recent discovery that recombinant insect PINK1 is catalytically active to test whether PINK1 directly phosphorylates 15 proteins encoded by PD-associated genes as well as proteins reported to bind PINK1. We have discovered that insect PINK1 efficiently phosphorylates only one of these proteins, namely the E3 ligase Parkin. We have mapped the phosphorylation site to a highly conserved residue within the Ubl domain of Parkin at Ser65. We show that human PINK1 is specifically activated by mitochondrial membrane potential (Δψm) depolarization, enabling it to phosphorylate Parkin at Ser65. We further show that phosphorylation of Parkin at Ser65 leads to marked activation of its E3 ligase activity that is prevented by mutation of Ser65 or inactivation of PINK1. We provide evidence that once activated, PINK1 autophosphorylates at several residues, including Thr257, which is accompanied by an electrophoretic mobility band-shift. These results provide the first evidence that PINK1 is activated following Δψm depolarization and suggest that PINK1 directly phosphorylates and activates Parkin. Our findings indicate that monitoring phosphorylation of Parkin at Ser65 and/or PINK1 at Thr257 represent the first biomarkers for examining activity of the PINK1-Parkin signalling pathway in vivo. Our findings also suggest that small molecule activators of Parkin that mimic the effect of PINK1 phosphorylation may confer therapeutic benefit for PD.


Biochemical Journal | 2014

Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65

Agne Kazlauskaite; Robert Gourlay; David G. Campbell; Maria Stella Ritorto; Kay Hofmann; Dario R. Alessi; Axel Knebel; Matthias Trost; Miratul M. K. Muqit

We have previously reported that the Parkinsons disease-associated kinase PINK1 (PTEN-induced putative kinase 1) is activated by mitochondrial depolarization and stimulates the Parkin E3 ligase by phosphorylating Ser65 within its Ubl (ubiquitin-like) domain. Using phosphoproteomic analysis, we identified a novel ubiquitin phosphopeptide phosphorylated at Ser65 that was enriched 14-fold in HEK (human embryonic kidney)-293 cells overexpressing wild-type PINK1 stimulated with the mitochondrial uncoupling agent CCCP (carbonyl cyanide m-chlorophenylhydrazone), to activate PINK1, compared with cells expressing kinase-inactive PINK1. Ser65 in ubiquitin lies in a similar motif to Ser65 in the Ubl domain of Parkin. Remarkably, PINK1 directly phosphorylates Ser65 of ubiquitin in vitro. We undertook a series of experiments that provide striking evidence that Ser65-phosphorylated ubiquitin (ubiquitinPhospho−Ser65) functions as a critical activator of Parkin. First, we demonstrate that a fragment of Parkin lacking the Ubl domain encompassing Ser65 (ΔUbl-Parkin) is robustly activated by ubiquitinPhospho−Ser65, but not by non-phosphorylated ubiquitin. Secondly, we find that the isolated Parkin Ubl domain phosphorylated at Ser65 (UblPhospho−Ser65) can also activate ΔUbl-Parkin similarly to ubiquitinPhospho−Ser65. Thirdly, we establish that ubiquitinPhospho−Ser65, but not non-phosphorylated ubiquitin or UblPhospho−Ser65, activates full-length wild-type Parkin as well as the non-phosphorylatable S65A Parkin mutant. Fourthly, we provide evidence that optimal activation of full-length Parkin E3 ligase is dependent on PINK1-mediated phosphorylation of both Parkin at Ser65 and ubiquitin at Ser65, since only mutation of both proteins at Ser65 completely abolishes Parkin activation. In conclusion, the findings of the present study reveal that PINK1 controls Parkin E3 ligase activity not only by phosphorylating Parkin at Ser65, but also by phosphorylating ubiquitin at Ser65. We propose that phosphorylation of Parkin at Ser65 serves to prime the E3 ligase enzyme for activation by ubiquitinPhospho−Ser65, suggesting that small molecules that mimic ubiquitinPhospho−Ser65 could hold promise as novel therapies for Parkinsons disease.


Biochemical Journal | 2007

Identification of Protor as a novel Rictor-binding component of mTOR complex-2

Laura R. Pearce; Xu Huang; Jérôme Boudeau; Rafał Pawłowski; Stephan Wullschleger; Maria Deak; Adel F. M. Ibrahim; Robert Gourlay; Mark A. Magnuson; Dario R. Alessi

The mTOR (mammalian target of rapamycin) protein kinase is an important regulator of cell growth. Two complexes of mTOR have been identified: complex 1, consisting of mTOR-Raptor (regulatory associated protein of mTOR)-mLST8 (termed mTORC1), and complex 2, comprising mTOR-Rictor (rapamycininsensitive companion of mTOR)-mLST8-Sin1 (termed mTORC2). mTORC1 phosphorylates the p70 ribosomal S6K (S6 kinase) at its hydrophobic motif (Thr389), whereas mTORC2 phosphorylates PKB (protein kinase B) at its hydrophobic motif (Ser473). In the present study, we report that widely expressed isoforms of unstudied proteins termed Protor-1 (protein observed with Rictor-1) and Protor-2 interact with Rictor and are components of mTORC2. We demonstrate that immunoprecipitation of Protor-1 or Protor-2 results in the co-immunoprecipitation of other mTORC2 subunits, but not Raptor, a specific component of mTORC1. We show that detergents such as Triton X-100 or n-octylglucoside dissociate mTOR and mLST8 from a complex of Protor-1, Sin1 and Rictor. We also provide evidence that Rictor regulates the expression of Protor-1, and that Protor-1 is not required for the assembly of other mTORC2 subunits into a complex. Protor-1 is a novel Rictor-binding subunit of mTORC2, but further work is required to establish its role.


Journal of Biological Chemistry | 2011

Polyubiquitin binding to optineurin is required for optimal activation of TANK-binding kinase 1 and production of interferon β.

Catherine E. Gleason; Alban Ordureau; Robert Gourlay; J. Simon C. Arthur; Philip P. Cohen

Background: Optineurin is a polyubiquitin-binding protein of unknown function. Result: Macrophages from mice expressing a polyubiquitin-binding defective mutant of optineurin show reduced activation of TANK-binding kinase 1 (TBK1) and reduced production of interferon β. Conclusion: The binding of polyubiquitin to optineurin is required for optimal activation and function of TBK1. Significance: This study identifies a new physiological role for optineurin. TANK-binding kinase (TBK1) is essential for transcription of the interferon (IFN) β gene in response to lipopolysaccharide (LPS) and double-stranded RNA, but the molecular mechanisms that underlie the activation of TBK1 are incompletely understood. Previously, we identified the NF-κB essential modulator (NEMO)-related polyubiquitin-binding protein, optineurin (OPTN), as a novel binding partner of TBK1. To determine whether the ubiquitin-binding function of OPTN is involved in regulating TBK1 and IFNβ production, we generated a mouse in which wild-type optineurin was replaced by the polyubiquitin binding-defective mutant, OPTND477N/D477N. In this study, we found that LPS or poly(I:C)-induced TBK1 activity was significantly reduced in bone marrow-derived macrophage (BMDM) from OPTND477N/D477N mice. Consistent with this, the phosphorylation of IFN regulatory factor 3 (IRF3) and the production of IFNβ mRNA and secretion were reduced. Stimulation of BMDMs with LPS triggered the phosphorylation of OPTN, which was reversed by phosphatase treatment and prevented by pharmacological inhibition of both the canonical IκB kinases (IKKα/β) and the IKK-related kinases (TBK1/IKKϵ). In contrast, LPS-stimulated phosphorylation of OPTN(D477N) was markedly reduced in BMDMs from OPTND477N/D477N mice, and inhibition of the canonical IKKs alone prevented phosphorylation, providing further evidence that ubiquitin binding to OPTN contributes to LPS-induced TBK1 activation. TBK1 and IKKβ phosphorylated OPTN preferentially at Ser-177 and Ser-513, respectively, in vitro. In conclusion, our results suggest that OPTN binds to polyubiquitylated species formed in response to LPS and poly(I:C), enhancing the activation of TBK1 that is required for optimal phosphorylation of IRF3 and production of IFNβ.


The EMBO Journal | 2011

MO25 is a master regulator of SPAK/OSR1 and MST3/MST4/YSK1 protein kinases

Beatrice Maria Filippi; Paola de los Heros; Youcef Mehellou; Iva Navratilova; Robert Gourlay; Maria Deak; Lorna Plater; Rachel Toth; Elton Zeqiraj; Dario R. Alessi

Mouse protein‐25 (MO25) isoforms bind to the STRAD pseudokinase and stabilise it in a conformation that can activate the LKB1 tumour suppressor kinase. We demonstrate that by binding to several STE20 family kinases, MO25 has roles beyond controlling LKB1. These new MO25 targets are SPAK/OSR1 kinases, regulators of ion homeostasis and blood pressure, and MST3/MST4/YSK1, involved in controlling development and morphogenesis. Our analyses suggest that MO25α and MO25β associate with these STE20 kinases in a similar manner to STRAD. MO25 isoforms induce approximately 100‐fold activation of SPAK/OSR1 dramatically enhancing their ability to phosphorylate the ion cotransporters NKCC1, NKCC2 and NCC, leading to the identification of several new phosphorylation sites. siRNA‐mediated reduction of expression of MO25 isoforms in mammalian cells inhibited phosphorylation of endogenous NKCC1 at residues phosphorylated by SPAK/OSR1, which is rescued by re‐expression of MO25α. MO25α/β binding to MST3/MST4/YSK1 also stimulated kinase activity three‐ to four‐fold. MO25 has evolved as a key regulator of a group of STE20 kinases and may represent an ancestral mechanism of regulating conformation of pseudokinases and activating catalytically competent protein kinases.


Biochemical Journal | 2014

The WNK-regulated SPAK/OSR1 kinases directly phosphorylate and inhibit the K + -Cl − co-transporters

Paola de los Heros; Dario R. Alessi; Robert Gourlay; David G. Campbell; Maria Deak; Thomas Macartney; Kristopher T. Kahle; Jinwei Zhang

Precise homoeostasis of the intracellular concentration of Cl− is achieved via the co-ordinated activities of the Cl− influx and efflux. We demonstrate that the WNK (WNK lysine-deficient protein kinase)-activated SPAK (SPS1-related proline/alanine-rich kinase)/OSR1 (oxidative stress-responsive kinase 1) known to directly phosphorylate and stimulate the N[K]CCs (Na+–K+ ion co-transporters), also promote inhibition of the KCCs (K+–Cl− co-transporters) by directly phosphorylating a recently described C-terminal threonine residue conserved in all KCC isoforms [Site-2 (Thr1048)]. First, we demonstrate that SPAK and OSR1, in the presence of the MO25 regulatory subunit, robustly phosphorylates all KCC isoforms at Site-2 in vitro. Secondly, STOCK1S-50699, a WNK pathway inhibitor, suppresses SPAK/OSR1 activation and KCC3A Site-2 phosphorylation with similar efficiency. Thirdly, in ES (embryonic stem) cells lacking SPAK/OSR1 activity, endogenous phosphorylation of KCC isoforms at Site-2 is abolished and these cells display elevated basal activity of 86Rb+ uptake that was not markedly stimulated further by hypotonic high K+ conditions, consistent with KCC3A activation. Fourthly, a tight correlation exists between SPAK/OSR1 activity and the magnitude of KCC3A Site-2 phosphorylation. Lastly, a Site-2 alanine KCC3A mutant preventing SPAK/OSR1 phosphorylation exhibits increased activity. We also observe that KCCs are directly phosphorylated by SPAK/OSR1, at a novel Site-3 (Thr5 in KCC1/KCC3 and Thr6 in KCC2/KCC4), and a previously recognized KCC3-specific residue, Site-4 (Ser96). These data demonstrate that the WNK-regulated SPAK/OSR1 kinases directly phosphorylate the N[K]CCs and KCCs, promoting their stimulation and inhibition respectively. Given these reciprocal actions with anticipated net effects of increasing Cl− influx, we propose that the targeting of WNK–SPAK/OSR1 with kinase inhibitors might be a novel potent strategy to enhance cellular Cl− extrusion, with potential implications for the therapeutic modulation of epithelial and neuronal ion transport in human disease states.


The EMBO Journal | 2015

Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1

Yu-Chiang Lai; Ronny Lehneck; James B. Procter; Brian D. Dill; Helen I. Woodroof; Robert Gourlay; Mark Peggie; Thomas Macartney; Olga Corti; Jean-Christophe Corvol; David G. Campbell; Aymelt Itzen; Matthias Trost; Miratul M. K. Muqit

Mutations in the PTEN‐induced kinase 1 (PINK1) are causative of autosomal recessive Parkinsons disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser65) of the ubiquitin ligase Parkin and ubiquitin to stimulate Parkin E3 ligase activity. Here, we have employed quantitative phosphoproteomics to search for novel PINK1‐dependent phosphorylation targets in HEK (human embryonic kidney) 293 cells stimulated by mitochondrial depolarisation. This led to the identification of 14,213 phosphosites from 4,499 gene products. Whilst most phosphosites were unaffected, we strikingly observed three members of a sub‐family of Rab GTPases namely Rab8A, 8B and 13 that are all phosphorylated at the highly conserved residue of serine 111 (Ser111) in response to PINK1 activation. Using phospho‐specific antibodies raised against Ser111 of each of the Rabs, we demonstrate that Rab Ser111 phosphorylation occurs specifically in response to PINK1 activation and is abolished in HeLa PINK1 knockout cells and mutant PINK1 PD patient‐derived fibroblasts stimulated by mitochondrial depolarisation. We provide evidence that Rab8A GTPase Ser111 phosphorylation is not directly regulated by PINK1 in vitro and demonstrate in cells the time course of Ser111 phosphorylation of Rab8A, 8B and 13 is markedly delayed compared to phosphorylation of Parkin at Ser65. We further show mechanistically that phosphorylation at Ser111 significantly impairs Rab8A activation by its cognate guanine nucleotide exchange factor (GEF), Rabin8 (by using the Ser111Glu phosphorylation mimic). These findings provide the first evidence that PINK1 is able to regulate the phosphorylation of Rab GTPases and indicate that monitoring phosphorylation of Rab8A/8B/13 at Ser111 may represent novel biomarkers of PINK1 activity in vivo. Our findings also suggest that disruption of Rab GTPase‐mediated signalling may represent a major mechanism in the neurodegenerative cascade of Parkinsons disease.


Nature Communications | 2014

The LKB1-salt-inducible kinase pathway functions as a key gluconeogenic suppressor in the liver

Kashyap Patel; Marc Foretz; A. Marion; David G. Campbell; Robert Gourlay; Nadia Boudaba; Emilie Tournier; Paul M. Titchenell; Mark Peggie; Maria Deak; Min Wan; Klaus H. Kaestner; Olga Göransson; Benoit Viollet; Nathanael S. Gray; Morris J. Birnbaum; Calum Sutherland; Kei Sakamoto

LKB1 is a master kinase that regulates metabolism and growth through adenosine monophosphate-activated protein kinase (AMPK) and 12 other closely related kinases. Liver-specific ablation of LKB1 causes increased glucose production in hepatocytes in vitro and hyperglycaemia in fasting mice in vivo. Here we report that the salt-inducible kinases (SIK1, 2 and 3), members of the AMPK-related kinase family, play a key role as gluconeogenic suppressors downstream of LKB1 in the liver. The selective SIK inhibitor HG-9-91-01 promotes dephosphorylation of transcriptional co-activators CRTC2/3 resulting in enhanced gluconeogenic gene expression and glucose production in hepatocytes, an effect that is abolished when an HG-9-91-01-insensitive mutant SIK is introduced or LKB1 is ablated. Although SIK2 was proposed as a key regulator of insulin-mediated suppression of gluconeogenesis, we provide genetic evidence that liver-specific ablation of SIK2 alone has no effect on gluconeogenesis and insulin does not modulate SIK2 phosphorylation or activity. Collectively, we demonstrate that the LKB1–SIK pathway functions as a key gluconeogenic gatekeeper in the liver.


BMC Biochemistry | 2008

Displacement affinity chromatography of protein phosphatase one (PP1) complexes

Greg B. G. Moorhead; Laura Trinkle-Mulcahy; Mhairi Nimick; Veerle De Wever; David G. Campbell; Robert Gourlay; Yun Wah Lam; Angus I. Lamond

BackgroundProtein phosphatase one (PP1) is a ubiquitously expressed, highly conserved protein phosphatase that dephosphorylates target protein serine and threonine residues. PP1 is localized to its site of action by interacting with targeting or regulatory proteins, a majority of which contains a primary docking site referred to as the RVXF/W motif.ResultsWe demonstrate that a peptide based on the RVXF/W motif can effectively displace PP1 bound proteins from PP1 retained on the phosphatase affinity matrix microcystin-Sepharose. Subsequent co-immunoprecipitation experiments confirmed that each identified binding protein was either a direct PP1 interactor or was in a complex that contains PP1. Our results have linked PP1 to numerous new nuclear functions and proteins, including Ki-67, Rif-1, topoisomerase IIα, several nuclear helicases, NUP153 and the TRRAP complex.ConclusionThis modification of the microcystin-Sepharose technique offers an effective means of purifying novel PP1 regulatory subunits and associated proteins and provides a simple method to uncover a link between PP1 and additional cellular processes.


Plant Journal | 2012

Arabidopsis thaliana histone deacetylase 14 (HDA14) is an α-tubulin deacetylase that associates with PP2A and enriches in the microtubule fraction with the putative histone acetyltransferase ELP3.

Hue T. Tran; Mhairi Nimick; R. Glen Uhrig; George W. Templeton; Nick Morrice; Robert Gourlay; Alison DeLong; Greg B. G. Moorhead

It is now emerging that many proteins are regulated by a variety of covalent modifications. Using microcystin-affinity chromatography we have purified multiple protein phosphatases and their associated proteins from Arabidopsis thaliana. One major protein purified was the histone deacetylase HDA14. We demonstrate that HDA14 can deacetylate α-tubulin, associates with α/β-tubulin and is retained on GTP/taxol-stabilized microtubules, at least in part, by direct association with the PP2A-A2 subunit. Like HDA14, the putative histone acetyltransferase ELP3 was purified on microcystin-Sepharose and is also enriched at microtubules, potentially functioning in opposition to HDA14 as the α-tubulin acetylating enzyme. Consistent with the likelihood of it having many substrates throughout the cell, we demonstrate that HDA14, ELP3 and the PP2A A-subunits A1, A2 and A3 all reside in both the nucleus and cytosol of the cell. The association of a histone deacetylase with PP2A suggests a direct link between protein phosphorylation and acetylation.

Collaboration


Dive into the Robert Gourlay's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge