Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Güth is active.

Publication


Featured researches published by Robert Güth.


Science | 2014

Genomic basis for the convergent evolution of electric organs

Jason R. Gallant; Lindsay L. Traeger; Jeremy D. Volkening; Howell F. Moffett; Po Hao Chen; Carl D. Novina; George N. Phillips; Rene Anand; Gregg B. Wells; Matthew Pinch; Robert Güth; Graciela A. Unguez; James S. Albert; Harold H. Zakon; Manoj P. Samanta; Michael R. Sussman

Only one way to make an electric organ? Electric fish have independently evolved electric organs that help them to communicate, navigate, hunt, and defend themselves. Gallant et al. analyzed the genome of the electric eel and the genes expressed in two other distantly related electric fish. The same genes were recruited within the different species to make evolutionarily new structures that function similarly. Science, this issue p. 1522 Multiple divergent fish lineages have used the same evolutionary toolkit to produce electric organs. Little is known about the genetic basis of convergent traits that originate repeatedly over broad taxonomic scales. The myogenic electric organ has evolved six times in fishes to produce electric fields used in communication, navigation, predation, or defense. We have examined the genomic basis of the convergent anatomical and physiological origins of these organs by assembling the genome of the electric eel (Electrophorus electricus) and sequencing electric organ and skeletal muscle transcriptomes from three lineages that have independently evolved electric organs. Our results indicate that, despite millions of years of evolution and large differences in the morphology of electric organ cells, independent lineages have leveraged similar transcription factors and developmental and cellular pathways in the evolution of electric organs.


Analyst | 2006

Analysis of bacterial strains with pyrolysis-gas chromatography/differential mobility spectrometry.

Satendra Prasad; Hartwig Schmidt; Peter Lampen; Mei Wang; Robert Güth; Jaya V. Rao; Geoffrey B. Smith; G. A. Eiceman

Eight vegetative bacterial strains and two spores were characterized by pyrolysis-gas chromatography with differential mobility spectrometry (py-GC/DMS) yielding topographic plots of ion intensity, retention time, and compensation voltage simultaneously for ions in positive and negative polarity. Biomarkers were found in the pyrolysate at characteristic retention times and compensation voltages and were confirmed by standard addition with GC/MS analyses providing discrimination between Gram negative and Gram positive bacterial types, but no recognition of individual strains within the Gram negative bacteria. Principal component analysis was applied using two dimensional data sets of ion intensity versus retention time at five compensation voltages including the reactant ion peaks all in positive and negative ion polarity. Clustering was observed with compensation voltage (CV) chromatograms associated with ion separation in the DMS detector and little or no clustering was observed with the reactant ion peaks or CV chromatograms where ion separation is poor. Consistent clustering of Gram positive B. odysseyi and Gram negative E. coli in both positive and negative polarities with the reactant ion peak chromatograms and key CV chromatograms suggests common but unknown common chemical compositions in the pyrolysate.


Analyst | 2007

Analysis of bacteria by pyrolysis gas chromatography–differential mobility spectrometry and isolation of chemical components with a dependence on growth temperature

Satendra Prasad; Karisa M. Pierce; Hartwig Schmidt; Jaya V. Rao; Robert Güth; Sabine Bader; Robert E. Synovec; Geoffrey B. Smith; G. A. Eiceman

Pyrolysis gas chromatography-differential mobility spectrometry (py-GC-DMS) analysis of E. coli, P. aeruginosa, S. warneri and M. luteus, grown at temperatures of 23, 30, and 37 degrees C, provided data sets of ion intensity, retention time, and compensation voltage for principal component analysis. Misaligned chromatographic axes were treated using piecewise alignment, the impact on the degree of class separation (DCS) of clusters was minor. The DCS, however, was improved between 21 to 527% by analysis of variance with Fisher ratios to remove chemical components independent of growth temperature. The temperature dependent components comprised 84% of all peaks in the py-GC-DMS analysis of E. coli and were attributed to the pyrolytic decomposition of proteins rather than lipids, as anticipated. Components were also isolated in other bacteria at differing amounts: 41% for M. luteus, 14% for P. aeruginosa, and 4% for S. warneri, and differing patterns suggested characteristic dependence on temperature of growth for these bacteria. These components are anticipated to have masses from 100 to 200 Da by inference from differential mobility spectra.


BMC Genomics | 2015

Unique patterns of transcript and miRNA expression in the South American strong voltage electric eel (Electrophorus electricus)

Lindsay L. Traeger; Jeremy D. Volkening; Howell F. Moffett; Jason R. Gallant; Po-Hao Chen; Carl D. Novina; George N. Phillips; Rene Anand; Gregg B. Wells; Matthew Pinch; Robert Güth; Graciela A. Unguez; James S. Albert; Harold H. Zakon; Michael R. Sussman; Manoj P. Samanta

BackgroundWith its unique ability to produce high-voltage electric discharges in excess of 600 volts, the South American strong voltage electric eel (Electrophorus electricus) has played an important role in the history of science. Remarkably little is understood about the molecular nature of its electric organs.ResultsWe present an in-depth analysis of the genome of E. electricus, including the transcriptomes of eight mature tissues: brain, spinal cord, kidney, heart, skeletal muscle, Sachs’ electric organ, main electric organ, and Hunter’s electric organ. A gene set enrichment analysis based on gene ontology reveals enriched functions in all three electric organs related to transmembrane transport, androgen binding, and signaling. This study also represents the first analysis of miRNA in electric fish. It identified a number of miRNAs displaying electric organ-specific expression patterns, including one novel miRNA highly over-expressed in all three electric organs of E. electricus. All three electric organ tissues also express three conserved miRNAs that have been reported to inhibit muscle development in mammals, suggesting that miRNA-dependent regulation of gene expression might play an important role in specifying an electric organ identity from its muscle precursor. These miRNA data were supported using another complete miRNA profile from muscle and electric organ tissues of a second gymnotiform species.ConclusionsOur work on the E. electricus genome and eight tissue-specific gene expression profiles will greatly facilitate future research on determining the coding and regulatory sequences that specify the function, development, and evolution of electric organs. Moreover, these data and future studies will be informed by the first comprehensive analysis of miRNA expression in an electric fish presented here.


The International Journal of Developmental Biology | 2009

S. macrurus myogenic regulatory factors (MRFs) induce mammalian skeletal muscle differentiation; evidence for functional conservation of MRFs.

Hyun-Jung Kim; Robert Güth; Colleen B. Jonsson; Graciela A. Unguez

The current-producing cells of the electric organ, i.e., electrocytes, in Sternopygus macrurus derive from skeletal muscle fibers. Mature electrocytes are not contractile, but they do retain some muscle proteins, are multinucleated, and receive cholinergic innervation. Electrocytes express the myogenic regulatory factors (MRFs) MyoD, myogenin, Myf5 and MRF4 despite their incomplete muscle phenotype. Although S. macrurus MRFs share functional domains which are highly conserved and their expression is confined to the myogenic lineage, their capability to induce the muscle phenotype has not been determined. To test the functional conservation of S. macrurus MRFs to transcriptionally activate skeletal muscle gene expression and induce the myogenic program, we transiently over-expressed S. macrurus MyoD (SmMyoD) and myogenin (SmMyoG) in mouse C3H/10T1/2 and NIH3T3 embryonic cells. RT-PCR and immunolabeling studies showed that SmMyoD and SmMyoG can efficiently convert these two cell lines into multinucleated myotubes which expressed differentiated muscle markers. The levels of myogenic induction by SmMyoD and SmMyoG were comparable to those obtained with mouse MRF homologs. Furthermore, SmMyoD and SmMyoG proteins were able to induce mouse MyoD and myogenin in C3H/10T1/2 cells. We conclude that S. macrurus MRFs are functionally conserved as they can transcriptionally activate skeletal muscle gene expression and induce the myogenic program in mammalian non-muscle cells. Hence, these data suggest that the partial muscle phenotype of electrocytes is not likely due to differences in the MRF-dependent transcriptional program between skeletal muscle and electric organ.


PeerJ | 2016

The myogenic electric organ of Sternopygus macrurus: a non-contractile tissue with a skeletal muscle transcriptome.

Matthew Pinch; Robert Güth; Manoj P. Samanta; Alexander Chaidez; Graciela A. Unguez

In most electric fish species, the electric organ (EO) derives from striated muscle cells that suppress many muscle properties. In the gymnotiform Sternopygus macrurus, mature electrocytes, the current-producing cells of the EO, do not contain sarcomeres, yet they continue to make some cytoskeletal and sarcomeric proteins and the muscle transcription factors (MTFs) that induce their expression. In order to more comprehensively examine the transcriptional regulation of genes associated with the formation and maintenance of the contractile sarcomere complex, results from expression analysis using qRT-PCR were informed by deep RNA sequencing of transcriptomes and miRNA compositions of muscle and EO tissues from adult S. macrurus. Our data show that: (1) components associated with the homeostasis of the sarcomere and sarcomere-sarcolemma linkage were transcribed in EO at levels similar to those in muscle; (2) MTF families associated with activation of the skeletal muscle program were not differentially expressed between these tissues; and (3) a set of microRNAs that are implicated in regulation of the muscle phenotype are enriched in EO. These data support the development of a unique and highly specialized non-contractile electrogenic cell that emerges from a striated phenotype and further differentiates with little modification in its transcript composition. This comprehensive analysis of parallel mRNA and miRNA profiles is not only a foundation for functional studies aimed at identifying mechanisms underlying the transcription-independent myogenic program in S. macrurus EO, but also has important implications to many vertebrate cell types that independently activate or suppress specific features of the skeletal muscle program.


The Journal of Experimental Biology | 2013

Mechanisms of muscle gene regulation in the electric organ of Sternopygus macrurus

Robert Güth; Matthew Pinch; Graciela A. Unguez

Summary Animals perform a remarkable diversity of movements through the coordinated mechanical contraction of skeletal muscle. This capacity for a wide range of movements is due to the presence of muscle cells with a very plastic phenotype that display many different biochemical, physiological and morphological properties. What factors influence the maintenance and plasticity of differentiated muscle fibers is a fundamental question in muscle biology. We have exploited the remarkable potential of skeletal muscle cells of the gymnotiform electric fish Sternopygus macrurus to trans-differentiate into electrocytes, the non-contractile electrogenic cells of the electric organ (EO), to investigate the mechanisms that regulate the skeletal muscle phenotype. In S. macrurus, mature electrocytes possess a phenotype that is intermediate between muscle and non-muscle cells. How some genes coding for muscle-specific proteins are downregulated while others are maintained, and novel genes are upregulated, is an intriguing problem in the control of skeletal muscle and EO phenotype. To date, the intracellular and extracellular factors that generate and maintain distinct patterns of gene expression in muscle and EO have not been defined. Expression studies in S. macrurus have started to shed light on the role that transcriptional and post-transcriptional events play in regulating specific muscle protein systems and the muscle phenotype of the EO. In addition, these findings also represent an important step toward identifying mechanisms that affect the maintenance and plasticity of the muscle cell phenotype for the evolution of highly specialized non-contractile tissues.


Physiological Genomics | 2016

Properties of skeletal muscle in the teleost Sternopygus macrurus are unaffected by short-term electrical inactivity

Robert Güth; Alexander Chaidez; Manoj P. Samanta; Graciela A. Unguez

Skeletal muscle is distinguished from other tissues on the basis of its shape, biochemistry, and physiological function. Based on mammalian studies, fiber size, fiber types, and gene expression profiles are regulated, in part, by the electrical activity exerted by the nervous system. To address whether similar adaptations to changes in electrical activity in skeletal muscle occur in teleosts, we studied these phenotypic properties of ventral muscle in the electric fish Sternopygus macrurus following 2 and 5 days of electrical inactivation by spinal transection. Our data show that morphological and biochemical properties of skeletal muscle remained largely unchanged after these treatments. Specifically, the distribution of type I and type II muscle fibers and the cross-sectional areas of these fiber types observed in control fish remained unaltered after each spinal transection survival period. This response to electrical inactivation was generally reflected at the transcript level in real-time PCR and RNA-seq data by showing little effect on the transcript levels of genes associated with muscle fiber type differentiation and plasticity, the sarcomere complex, and pathways implicated in the regulation of muscle fiber size. Data from this first study characterizing the acute influence of neural activity on muscle mass and sarcomere gene expression in a teleost are discussed in the context of comparative studies in mammalian model systems and vertebrate species from different lineages.


Journal of Physiology-paris | 2016

Sternopygus macrurus electric organ transcriptome and cell size exhibit insensitivity to short-term electrical inactivity

Robert Güth; Matthew Pinch; Manoj P. Samanta; Alexander Chaidez; Graciela A. Unguez

Electrical activity is an important regulator of cellular function and gene expression in electrically excitable cell types. In the weakly electric teleost fish Sternopygus macrurus, electrocytes, i.e., the current-producing cells of the electric organ, derive from a striated muscle lineage. Mature electrocytes are larger than muscle fibers, do not contain sarcomeres, and are driven continuously at frequencies higher than those exerted on muscle cells. Previous work showed that the removal of electrical activity by spinal cord transection (ST) for two and five weeks led to an upregulation of some sarcomeric proteins and a decrease in electrocyte size. To test whether changes in gene transcription preceded these phenotypic changes, we determined the sensitivity of electrocyte gene expression to electrical inactivity periods of two and five days after ST. Whole tissue gene expression profiles using deep RNA sequencing showed minimal alterations in the levels of myogenic transcription factor and sarcomeric transcripts after either ST period. Moreover, while analysis of differentially expressed genes showed a transient upregulation of genes associated with proteolytic mechanisms at two days and an increase in mRNA levels of cytoskeletal genes at five days after electrical silencing, electrocyte size was not affected. Electrical inactivity also resulted in the downregulation of genes that were classified into enriched clusters associated with functions of axon migration and synapse structure. Overall, these data demonstrate that unlike tissues in the myogenic lineage in other vertebrate species, regulation of gene transcription and cell size in the muscle-like electrocytes of S. macrurus is highly insensitive to short-term electrical inactivity. Moreover, together with data obtained from control and long-term ST studies, the present data suggest that neural input might influence post-transcriptional processes to affect the mature electrocyte phenotype.


biomedical circuits and systems conference | 2013

Wireless sensing framework for long-term measurements of electric organ discharge

Michael Harris; Evan Salazar; Robert Güth; Vishal Nawathe; Mahmoud Sharifi; Wei Tang; Satyajayant Misra

Collaboration


Dive into the Robert Güth's collaboration.

Top Co-Authors

Avatar

Graciela A. Unguez

New Mexico State University

View shared research outputs
Top Co-Authors

Avatar

Matthew Pinch

New Mexico State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander Chaidez

New Mexico State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. A. Eiceman

New Mexico State University

View shared research outputs
Top Co-Authors

Avatar

Geoffrey B. Smith

New Mexico State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregg B. Wells

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Harold H. Zakon

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge