Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert H. Carnahan is active.

Publication


Featured researches published by Robert H. Carnahan.


Cell | 2006

p120-Catenin and p190RhoGAP Regulate Cell-Cell Adhesion by Coordinating Antagonism between Rac and Rho

Gregg A. Wildenberg; Michael R. Dohn; Robert H. Carnahan; Michael A. Davis; Nichole A. Lobdell; Jeffrey Settleman; Albert B. Reynolds

Integration of receptor tyrosine kinase, integrin, and cadherin activities is crucial for normal cell growth, motility, and adhesion. Here, we describe roles for p120-catenin (p120) and p190RhoGAP that coordinate crosstalk between these systems and regulate cadherin function. Surprisingly, PDGFR-induced actin remodeling in NIH3T3 cells is blocked in the absence of p120, and the cells are partially transformed via constitutive activation of Rho. We have traced the mechanism to unexpected codependent roles for p120 and p190RhoGAP in regulating Rac-dependent antagonism of Rho. Receptor-induced Rac activity causes translocation of p190RhoGAP to adherens junctions (AJs), where it couples to the cadherin complex via interaction with p120. AJ formation is dependent on this p120-p190RhoGAP interaction and fails altogether if either of these proteins are compromised. We propose that Rac activation links diverse signaling systems to AJ assembly by controlling transient p190RhoGAP interactions with p120 and localized inhibition of Rho.


Yeast | 2001

Vectors and gene targeting modules for tandem affinity purification in Schizosaccharomyces pombe

Joseph J. Tasto; Robert H. Carnahan; W. Hayes McDonald; Kathleen L. Gould

We describe the construction of tagging cassettes and plasmids for tandem affinity purification (TAP) of proteins in Schizosaccharomyces pombe. The tagging cassettes are designed for either carboxy‐ or amino‐terminal tagging of proteins. The carboxyl terminal tags differ in that they contain either two or four repeats of IgG binding units. For tagging endogenous loci, the cassettes contain the kan MX6 module to allow for selection of G418‐resistant cells. The amino‐terminal tagging vectors allow for the regulated expression of proteins. Sz. pombe Cdc2p was chosen to test these new affinity tags. Several known binding proteins co‐purified with both Cdc2p‐CTAP and N‐TAP‐Cdc2p, indicating the usefulness of these tags for the rapid purification of stable protein complexes from Sz. pombe. Copyright


Journal of Cell Biology | 2003

The PCH family protein, Cdc15p, recruits two F-actin nucleation pathways to coordinate cytokinetic actin ring formation in Schizosaccharomyces pombe

Robert H. Carnahan; Kathleen L. Gould

Cytokinetic actin ring (CAR) formation in Schizosaccharomyces pombe requires two independent actin nucleation pathways, one dependent on the Arp2/3 complex and another involving the formin Cdc12p. Here we investigate the role of the S. pombe Cdc15 homology family protein, Cdc15p, in CAR assembly and find that it interacts with proteins from both of these nucleation pathways. Cdc15p binds directly to the Arp2/3 complex activator Myo1p, which likely explains why actin patches and the Arp2/3 complex fail to be medially recruited during mitosis in cdc15 mutants. Cdc15p also binds directly to Cdc12p. Cdc15p and Cdc12p not only display mutual dependence for CAR localization, but also exist together in a ring-nucleating structure before CAR formation. The disruption of these interactions in cdc15 null cells is likely to be the reason for their complete lack of CARs. We propose a model in which Cdc15p plays a critical role in recruiting and coordinating the pathways essential for the assembly of medially located F-actin filaments and construction of the CAR.


Journal of Virology | 2000

Four Proteins Processed from the Replicase Gene Polyprotein of Mouse Hepatitis Virus Colocalize in the Cell Periphery and Adjacent to Sites of Virion Assembly

Anne G. Bost; Robert H. Carnahan; Xiaotao Lu; Mark R. Denison

ABSTRACT The replicase gene (gene 1) of the coronavirus mouse hepatitis virus (MHV) encodes two co-amino-terminal polyproteins presumed to incorporate all the virus-encoded proteins necessary for viral RNA synthesis. The polyproteins are cotranslationally processed by viral proteinases into at least 15 mature proteins, including four predicted cleavage products of less than 25 kDa that together would comprise the final 59 kDa of protein translated from open reading frame 1a. Monospecific antibodies directed against the four distinct domains detected proteins of 10, 12, and 15 kDa (p1a-10, p1a-12, and p1a-15) in MHV-A59-infected DBT cells, in addition to a previously identified 22-kDa protein (p1a-22). When infected cells were probed by immunofluorescence laser confocal microscopy, p1a-10, -22, -12, and -15 were detected in discrete foci that were prominent in the perinuclear region but were widely distributed throughout the cytoplasm as well. Dual-labeling experiments demonstrated colocalization of the majority of p1a-22 in replication complexes with the helicase, nucleocapsid, and 3C-like proteinase, as well as with p1a-10, -12, and -15. p1a-22 was also detected in separate foci adjacent to the replication complexes. The majority of complexes containing the gene 1 proteins were distinct from sites of accumulation of the M assembly protein. However, in perinuclear regions the gene 1 proteins and nucleocapsid were intercalated with sites of M protein localization. These results demonstrate that the complexes known to be involved in RNA synthesis contain multiple gene 1 proteins and are closely associated with structural proteins at presumed sites of virion assembly.


PLOS ONE | 2010

The Molecular Evolution of the p120-Catenin Subfamily and Its Functional Associations

Robert H. Carnahan; Antonis Rokas; Eric A. Gaucher; Albert B. Reynolds

Background p120-catenin (p120) is the prototypical member of a subclass of armadillo-related proteins that includes δ-catenin/NPRAP, ARVCF, p0071, and the more distantly related plakophilins 1–3. In vertebrates, p120 is essential in regulating surface expression and stability of all classical cadherins, and directly interacts with Kaiso, a BTB/ZF family transcription factor. Methodology/Principal Findings To clarify functional relationships between these proteins and how they relate to the classical cadherins, we have examined the proteomes of 14 diverse vertebrate and metazoan species. The data reveal a single ancient δ-catenin-like p120 family member present in the earliest metazoans and conserved throughout metazoan evolution. This single p120 family protein is present in all protostomes, and in certain early-branching chordate lineages. Phylogenetic analyses suggest that gene duplication and functional diversification into “p120-like” and “δ-catenin-like” proteins occurred in the urochordate-vertebrate ancestor. Additional gene duplications during early vertebrate evolution gave rise to the seven vertebrate p120 family members. Kaiso family members (i.e., Kaiso, ZBTB38 and ZBTB4) are found only in vertebrates, their origin following that of the p120-like gene lineage and coinciding with the evolution of vertebrate-specific mechanisms of epigenetic gene regulation by CpG island methylation. Conclusions/Significance The p120 protein family evolved from a common δ-catenin-like ancestor present in all metazoans. Through several rounds of gene duplication and diversification, however, p120 evolved in vertebrates into an essential, ubiquitously expressed protein, whereas loss of the more selectively expressed δ-catenin, p0071 and ARVCF are tolerated in most species. Together with phylogenetic studies of the vertebrate cadherins, our data suggest that the p120-like and δ-catenin-like genes co-evolved separately with non-neural (E- and P-cadherin) and neural (N- and R-cadherin) cadherin lineages, respectively. The expansion of p120 relative to δ-catenin during vertebrate evolution may reflect the pivotal and largely disproportionate role of the non-neural cadherins with respect to evolution of the wide range of somatic morphology present in vertebrates today.


PLOS ONE | 2011

ReCLIP (Reversible Cross-Link Immuno-Precipitation): An Efficient Method for Interrogation of Labile Protein Complexes

Andrew L. Smith; David B. Friedman; Huapeng Yu; Robert H. Carnahan; Albert B. Reynolds

The difficulty of maintaining intact protein complexes while minimizing non-specific background remains a significant limitation in proteomic studies. Labile interactions, such as the interaction between p120-catenin and the E-cadherin complex, are particularly challenging. Using the cadherin complex as a model-system, we have developed a procedure for efficient recovery of otherwise labile protein-protein interactions. We have named the procedure “ReCLIP” (Reversible Cross-Link Immuno-Precipitation) to reflect the primary elements of the method. Using cell-permeable, thiol-cleavable crosslinkers, normally labile interactions (i.e. p120 and E-cadherin) are stabilized in situ prior to isolation. After immunoprecipitation, crosslinked binding partners are selectively released and all other components of the procedure (i.e. beads, antibody, and p120 itself) are discarded. The end result is extremely efficient recovery with exceptionally low background. ReCLIP therefore appears to provide an excellent alternative to currently available affinity-purification approaches, particularly for studies of labile complexes.


Development | 2012

p120-catenin is essential for terminal end bud function and mammary morphogenesis

Sarah J. Kurley; Brian Bierie; Robert H. Carnahan; Nichole A. Lobdell; Michael A. Davis; Ilse Hofmann; Harold L. Moses; William J. Muller; Albert B. Reynolds

Although p120-catenin (p120) is crucial for E-cadherin function, ablation experiments in epithelial tissues from different organ systems reveal markedly different effects. Here, we examine for the first time the consequences of p120 knockout during mouse mammary gland development. An MMTV-Cre driver was used to target knockout to the epithelium at the onset of puberty. p120 ablation was detected in approximately one-quarter of the nascent epithelium at the forth week post-partum. However, p120 null cells were essentially nonadherent, excluded from the process of terminal end bud (TEB) morphogenesis and lost altogether by week six. This elimination process caused a delay in TEB outgrowth, after which the gland developed normally from cells that had retained p120. Mechanistic studies in vitro indicate that TEB dysfunction is likely to stem from striking E-cadherin loss, failure of cell-cell adhesion and near total exclusion from the collective migration process. Our findings reveal an essential role for p120 in mammary morphogenesis.


Eukaryotic Cell | 2005

Dim1p Is Required for Efficient Splicing and Export of mRNA Encoding Lid1p, a Component of the Fission Yeast Anaphase-Promoting Complex

Robert H. Carnahan; Anna Feoktistova; Liping Ren; Sherry Niessen; John R. Yates; Kathleen L. Gould

ABSTRACT Schizosaccharomyces pombe Dim1p is required for maintaining the steady-state level of the anaphase-promoting complex or cyclosome (APC/C) component Lid1p and thus for maintaining the steady-state level and activity of the APC/C. To gain further insight into Dim1p function, we have investigated the mechanism whereby Dim1p influences Lid1p levels. We show that S. pombe cells lacking Dim1p or Saccharomyces cerevisiae cells lacking its ortholog, Dib1p, are defective in generalized pre-mRNA splicing in vivo, a result consistent with the identification of Dim1p as a component of the purified yeast U4/U6.U5 tri-snRNP complex. Moreover, we find that Dim1p is part of a complex with the splicing factor Prp1p. However, although Dim1p is required for efficient splicing of lid1+ pre-mRNA, circumventing the necessity for this particular function of Dim1p is insufficient for restoring normal Lid1p levels. Finally, we provide evidence that Dim1p also participates in the nuclear export of lid1+ mRNA and that it is likely the combined loss of both of these two Dim1p functions which compromises Lid1p levels in the absence of proper Dim1p function. These data indicate that a mechanism acting at the level of mRNA impacts the functioning of the APC/C, a critical complex in controlling mitotic progression.


PLOS ONE | 2012

Kaiso Directs the Transcriptional Corepressor MTG16 to the Kaiso Binding Site in Target Promoters

Caitlyn W. Barrett; J. Joshua Smith; Lauren C. Lu; Nicholas O. Markham; Kristy R. Stengel; Sarah P. Short; Baolin Zhang; Aubrey Hunt; Barbara Fingleton; Robert H. Carnahan; Michael E. Engel; Xi Chen; R. Daniel Beauchamp; Keith T. Wilson; Scott W. Hiebert; Albert B. Reynolds; Christopher S. Williams

Myeloid translocation genes (MTGs) are transcriptional corepressors originally identified in acute myelogenous leukemia that have recently been linked to epithelial malignancy with non-synonymous mutations identified in both MTG8 and MTG16 in colon, breast, and lung carcinoma in addition to functioning as negative regulators of WNT and Notch signaling. A yeast two-hybrid approach was used to discover novel MTG binding partners. This screen identified the Zinc fingers, C2H2 and BTB domain containing (ZBTB) family members ZBTB4 and ZBTB38 as MTG16 interacting proteins. ZBTB4 is downregulated in breast cancer and modulates p53 responses. Because ZBTB33 (Kaiso), like MTG16, modulates Wnt signaling at the level of TCF4, and its deletion suppresses intestinal tumorigenesis in the ApcMin mouse, we determined that Kaiso also interacted with MTG16 to modulate transcription. The zinc finger domains of Kaiso as well as ZBTB4 and ZBTB38 bound MTG16 and the association with Kaiso was confirmed using co-immunoprecipitation. MTG family members were required to efficiently repress both a heterologous reporter construct containing Kaiso binding sites (4×KBS) and the known Kaiso target, Matrix metalloproteinase-7 (MMP-7/Matrilysin). Moreover, chromatin immunoprecipitation studies placed MTG16 in a complex occupying the Kaiso binding site on the MMP-7 promoter. The presence of MTG16 in this complex, and its contributions to transcriptional repression both required Kaiso binding to its binding site on DNA, establishing MTG16-Kaiso binding as functionally relevant in Kaiso-dependent transcriptional repression. Examination of a large multi-stage CRC expression array dataset revealed patterns of Kaiso, MTG16, and MMP-7 expression supporting the hypothesis that loss of either Kaiso or MTG16 can de-regulate a target promoter such as that of MMP-7. These findings provide new insights into the mechanisms of transcriptional control by ZBTB family members and broaden the scope of co-repressor functions for the MTG family, suggesting coordinate regulation of transcription by Kaiso/MTG complexes in cancer.


American Journal of Respiratory Cell and Molecular Biology | 2015

Regulation of Alveolar Procoagulant Activity and Permeability in Direct Acute Lung Injury by Lung Epithelial Tissue Factor

Ciara M. Shaver; Brandon S. Grove; Nathan D. Putz; Jennifer K. Clune; William Lawson; Robert H. Carnahan; Nigel Mackman; Lorraine B. Ware; Julie A. Bastarache

Tissue factor (TF) initiates the extrinsic coagulation cascade in response to tissue injury, leading to local fibrin deposition. Low levels of TF in mice are associated with increased severity of acute lung injury (ALI) after intratracheal LPS administration. However, the cellular sources of the TF required for protection from LPS-induced ALI remain unknown. In the current study, transgenic mice with cell-specific deletions of TF in the lung epithelium or myeloid cells were treated with intratracheal LPS to determine the cellular sources of TF important in direct ALI. Cell-specific deletion of TF in the lung epithelium reduced total lung TF expression to 39% of wild-type (WT) levels at baseline and to 29% of WT levels after intratracheal LPS. In contrast, there was no reduction of TF with myeloid cell TF deletion. Mice lacking myeloid cell TF did not differ from WT mice in coagulation, inflammation, permeability, or hemorrhage. However, mice lacking lung epithelial TF had increased tissue injury, impaired activation of coagulation in the airspace, disrupted alveolar permeability, and increased alveolar hemorrhage after intratracheal LPS. Deletion of epithelial TF did not affect alveolar permeability in an indirect model of ALI caused by systemic LPS infusion. These studies demonstrate that the lung epithelium is the primary source of TF in the lung, contributing 60-70% of total lung TF, and that lung epithelial, but not myeloid, TF may be protective in direct ALI.

Collaboration


Dive into the Robert H. Carnahan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ciara M. Shaver

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregg A. Wildenberg

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge