Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert H. Edwards is active.

Publication


Featured researches published by Robert H. Edwards.


Cell | 1992

A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter

Yongjian Liu; Doris Peter; Ali Roghani; Shimon Schuldiner; Gilbert G. Privé; David Eisenberg; Nicholas C. Brecha; Robert H. Edwards

Classical neurotransmitters are transported into synaptic vesicles so that their release can be regulated by neural activity. In addition, the vesicular transport of biogenic amines modulates susceptibility to N-methyl-4-phenylpyridinium (MPP+), the active metabolite of the neurotoxin N-methyl-1,2,3,6-tetrahydropyridine that produces a model of Parkinsons disease. Taking advantage of selection in MPP+, we have used gene transfer followed by plasmid rescue to identify a cDNA clone that encodes a vesicular amine transporter. The sequence predicts a novel mammalian protein with 12 transmembrane domains and homology to a class of bacterial drug resistance transporters. We have detected messenger RNA transcripts for this transporter only in the adrenal gland. Monoamine cell populations in the brain stem express a distinct but highly related protein.


Cell | 1992

The synaptic vesicle protein SV2 is a novel type of transmembrane transporter

Mel B. Feany; Sandra Lee; Robert H. Edwards; Kathleen M. Buckley

The primary function of synaptic vesicles is to store and release neurotransmitter. Synaptic vesicles are locally recycled following exocytosis and rapidly refilled with neurotransmitter from the cytoplasm by a process that depends on the electrochemical gradient generated by a proton pump. Little is known about the molecules that import neurotransmitter into synaptic vesicles. We report here that the sequence of the synaptic vesicle protein SV2 identifies this protein as a novel type of transmembrane transporter. The deduced amino acid sequence of SV2 contains two sets of six predicted transmembrane domains: the six most N-terminal transmembrane domains are highly homologous to a subfamily of transporters that includes the human glucose transporter, while the six most C-terminal domains are homologous to the plasma membrane transporters for neurotransmitters. We propose that SV2 mediates transport of neurotransmitters into synaptic vesicles.


Neuroscience | 1992

Cholinergic neurons in the rat central nervous system demonstrated by in situ hybridization of choline acetyltransferase mRNA

Justin D. Oh; Nancy J. Woolf; Ali Roghani; Robert H. Edwards; Larry L. Butcher

Digoxigenin-labeled RNA probes and in situ hybridization histochemistry were used to examine choline acetyltransferase gene expression in the rat central nervous system. Hybridization signal was present only in brain sections processed with the antisense riboprobe. The sense probe did not yield labeling, further validating the specificity of tissue reactivity. Telencephalic neurons containing the mRNA for the cholinergic synthetic enzyme were found in the caudate-putamen nucleus, nucleus accumbens, olfactory tubercule, islands of Calleja complex, medial septal nucleus, vertical and horizontal limbs of the diagonal band, substantia innominata, nucleus basalis, and nucleus of the ansa lenticularis. Some somata evincing hybridization signal were observed in the anterior amygdalar area, and an occasional such cell was seen in the basolateral and central amygdalar nuclei. Neurons in the cerebral cortex, hippocampus, and primary olfactory structures did not demonstrate hybridocytochemically detectable amounts of choline acetyltransferase mRNA. Thalamic cells were devoid of reactivity, with the exception of several neurons located primarily in the ventral two-thirds of the medial habenula. A few somata labeled with riboprobe were found in the lateral hypothalamus, caudal extension of the internal capsule, and zona incerta. Neurons in the pedunculopontine and laterodorsal tegmental nuclei were moderately reactive, whereas cells of the parabigeminal nucleus exhibited a very weak hybridization signal. No somata in the brainstem raphe nuclei, including raphe obscurus and raphe magnus, were observed to bind riboprobe. In contrast, motor neurons of the cranial nerve nuclei demonstrated relatively large amounts of choline acetyltransferase mRNA. Putative cholinergic somata in the ventral horns and intermediolateral cell columns of the spinal cord were also labeled with riboprobe, as were a few cells around the central canal. We conclude that hybridocytochemistry with digoxigenin-labeled riboprobes confirms the existence of cholinergic neurons (i.e. those that synthesize and use acetylcholine as a neurotransmitter) in most of the neural regions deduced to contain them on the basis of previous histochemical and immunocytochemical data. Notable exceptions are the cerebral cortex and hippocampus, which do not possess neurons expressing detectable levels of choline acetyltransferase mRNA.


Current Opinion in Neurobiology | 1992

The transport of neurotransmitters into synaptic vesicles

Robert H. Edwards

As investigations identify additional plasma membrane neurotransmitter transporters, attention has focused on the molecular basis of neurotransmitter transport into synaptic vesicles. The transport of biogenic amines into chromaffin granules has served as the paradigm for understanding vesicular transport. Recent work now describes the vesicular transport of other classical neurotransmitters, which occur by distinct but related mechanisms. To determine their biochemical basis, several of the transporters have been functionally reconstituted in liposomes. The ability of vesicular amine transport to protect against the neurotoxin MPP+ has permitted the isolation of the first cDNA clone for a member of this family, and the sequence establishes a relationship with drug-resistance transporters in bacteria.


Neuroscience | 1997

Distribution of the putative vesicular transporter for acetylcholine in the rat central nervous system

Ali Roghani; A Shirzadi; Larry L. Butcher; Robert H. Edwards

Abstract In order to develop another selective marker for cholinergic cell bodies and fibres, we have raised a highly specific polyclonal antibody against a peptide derived from the C-terminus of a recently cloned putative vesicular acetylcholine transporter. This antibody recognizes the vesicular acetylcholine transporter protein on Western blots of membranes from transfected monkey fibroblast COS cells as well as from various rat brain regions but not from untransfected COS cells or rat liver. In separate mapping studies, the antibody was found to stain cell bodies and fibres in all of the regions of the nervous system known to be cholinergic, including (i) the various nuclei of the basal nuclear complex and their projections to the hippocampus, amygdala, and cerebral cortex, (ii) the caudate–putamen nucleus, accumbens nucleus, olfactory tubercle, and islands of calleja complex, (iii) the medial habenula, (iv) the mesopontine cholinergic complex and its projections to the thalamus, extrapyramidal motor nuclei, basal forebrain, cingulate cortex, raphe and reticular nuclei, and some cranial nerve nuclei, and (v) the somatic motor and autonomic nuclei of the cranial and spinal nerves. In many of these cholinergic neurons, it is possible to detect immunoreactivity for the vesicular acetylcholine transporter in proximal portions of processes and their branches, as well as in numerous puncta in close association with them. Some of these puncta are large and surround cell bodies and processes of neurons in several regions, including the somatic motor neurons of cranial nerve nuclei in the brainstem and in the ventral horn of the spinal cord. Double immunofluorescence studies indicated that neurons positive for the vesicular acetylcholine transporter also stained for the biosynthetic enzyme of acetylcholine, choline acetyltransferase. We conclude that antibody against the C-terminus of the putative vesicular acetylcholine transporter provides another marker for cholinergic neurons that, unlike in situ hybridization procedures, labels terminals as well as cell bodies. Therefore this antibody has the potential to reveal changes in number and morphology of cholinergic cell bodies and their terminal varicosities that occur in both physiologic and pathologic conditions.


Genomics | 1993

Chromosomal localization of the human vesicularamine transporter genes

Doris Peter; J. Patrick Finn; Ivana Klisak; Yongjian Liu; Tracy Kojis; Camilla Heinzmann; Ali Roghani; Robert S. Sparkes; Robert H. Edwards

The physiologic and behavioral effects of pharmacologic agents that interfere with the transport of monoamine neurotransmitters into vesicles suggest that vesicular amine transport may contribute to human neuropsychiatric disease. To determine whether an alteration in the genes that encode vesicular amine transport contributes to the inherited component of these disorders, we have isolated a human cDNA for the brain transporter and localized the human vesicular amine transporter genes. The human brain synaptic vesicle amine transporter (SVAT) shows unexpected conservation with rat SVAT in the regions that diverge extensively between rat SVAT and the rat adrenal chromaffin granule amine transporter (CGAT). Using the cloned sequences with a panel of mouse-human hybrids and in situ hybridization for regional localization, the adrenal CGAT gene (or VAT1) maps to human chromosome 8p21.3 and the brain SVAT gene (or VAT2) maps to chromosome 10q25. Both of these sites occur very close to if not within previously described deletions that produce severe but viable phenotypes.


Neurochemistry International | 1992

Organization of central cholinergic neurons revealed by combined in situ hybridization histochemistry and choline-O-acetyltransferase immunocytochemistry

Larry L. Butcher; Justin D. Oh; Nancy J. Woolf; Robert H. Edwards; Ali Roghani

Digoxigenin-labeled riboprobes and in situ hybridization of choline-O-acetyltransferase mRNA, both alone and in combination with immunohistochemical procedures for the synthetic enzyme of acetylcholine, were used to map the topography of putative cholinergic neurons in the rat central nervous system. Only the anti-sense riboprobe yielded specific labeling, which was absent in brain sections processed with sense riboprobe. Telencephalic neurons demonstrating the mRNA for choline-O-acetyltransferase and choline-O-acetyltransferase-like immunoreactivity were found in the caudate-putamen nucleus, nucleus accumbens, olfactory tubercule, Islands of Calleja complex, medial septal nucleus, vertical and horizontal limbs of the diagonal band, substantia innominata, nucleus basalis, and nucleus of the ansa lenticularis, as well as occasionally in the amygdala. Neurons in the cerebral cortex, hippocampus, and primary olfactory structures did not demonstrate hybridization signal, even though some cells in those areas were observed to exhibit choline-O-acetyltransferase-like immunopositivity. Thalamic cells were devoid of hybrido- and immunoreactivity, with the exception of several neurons located primarily in the ventral two-thirds of the medial habenula. A few cell bodies labeled with riboprobe and co-localizing choline-O-acetyltransferase-like immunopositivity were found in the lateral hypothalamus, caudal extension of the internal capsule, and zona incerta. Neurons in the pedunculopontine and laterodorsal tegmental nuclei evinced moderate hybridization signal, whereas cells of the parabigeminal nucleus were very weakly reactive. In contrast, motor neurons of the cranial nerve nuclei demonstrated high levels of choline-O-acetyltransferase mRNA and choline-O-acetyltransferase-like immunoreactivity. Putative cholinergic somata in the ventral horns and intermediolateral cell columns of the spinal cord and around the central canal were also labeled with riboprobe. It is concluded that hybridocytochemistry with digoxigenin-labeled riboprobes confirms the existence of cholinergic neurons in most of the neural regions believed to contain them on the basis of acetylcholinesterase pharmacohistochemistry and choline-O-acetyltransferase immunocytochemistry, with the prominent exceptions of the cerebral cortex, hippocampus, olfactory bulb, anterior olfactory nucleus, and caudal raphe nuclei, which apparently do not possess neurons expressing detectable levels of the mRNA for the synthetic enzyme of acetylcholine.


Journal of Biological Chemistry | 1997

Individual Residues Contribute to Multiple Differences in Ligand Recognition between Vesicular Monoamine Transporters 1 and 2

J. Patrick Finn; Robert H. Edwards

Molecular cloning has identified two vesicular monoamine transporters (VMATs), one expressed in non-neural cells of the periphery (VMAT1) and the other by multiple monoamine cell populations in the brain (VMAT2). Functional analysis has previously shown that VMAT2 has a higher affinity than VMAT1 for monoamine neurotransmitters as well as the inhibitor tetrabenazine. The analysis of chimeric transporters has also identified two major regions required for the high affinity interactions of VMAT2 with these ligands. We have now used site-directed mutagenesis to identify the individual residues responsible for these differences. Focusing on the region that spans transmembrane domains 9 through 12, we have replaced VMAT2 residues with the corresponding residues from VMAT1. Many residues in this region had no effect on the recognition of these ligands, but substitution of Tyr-434 with Phe and Asp-461 with Asn reduced the affinity for tetrabenazine, histamine, and serotonin. Although the ability to affect recognition of multiple ligands suggests a general structural role for these residues, the mutations did not affect dopamine recognition, indicating a more specific role, possibly in recognition of the ring nitrogen that occurs in tetrabenazine, histamine, and serotonin but not dopamine. The mutation K446Q reduced the affinity of VMAT2 for tetrabenazine and serotonin but not histamine, whereas F464Y reduced serotonin affinity and perhaps histamine recognition but not tetrabenazine sensitivity, providing more evidence for specificity. Interestingly, theV max of both VMATs for dopamine exceeded that for serotonin by 3–5-fold, indicating a difference in the speed of packaging of these two neurotransmitters. We also found that VMAT1 has a higher affinity for tryptamine than VMAT2. This mutually exclusive interaction with serotonin and tryptamine also suggests a physiological rationale for the existence of two VMATs. Surprisingly, the residue responsible for this difference, Tyr-434, also accounts for the higher affinity interaction of VMAT2 with tetrabenazine, histamine, and serotonin. Interestingly, replacement of Tyr-434 with alanine increases the affinity of VMAT2 for both serotonin and dopamine and reduces the rate of dopamine transport.


Molecular Brain Research | 1996

Differential distribution of the putative vesicular transporter for acetylcholine in the rat central nervous system.

Ali Roghani; Arshia Shirzadi; Sirus A. Kohan; Robert H. Edwards; Larry L. Butcher

The organization and distribution of the mRNA for the putative vesicular transporter for acetylcholine (VAChT) was studied in the rat brain by use of digoxigenin-labeled riboprobes and in situ hybridization technology. Signal was observed in all neural regions deduced to contain cholinergic somata on the basis of previous histochemical investigations employing choline acetyltransferase riboprobes and prior immunocytochemical studies with antibodies against choline acetyltransferase. It was absent in areas believed to contain no cholinergic neurons. Anti-sense riboprobes hybridized to the mRNA for the putative VAChT: (a) the projection neurons of the various nuclei of the basal nuclear complex, (b) the local circuit cells of the dorsal and ventral striata, (c) the projection neurons of the mesopontine complex, (d) perikarya in the ventral 2/3 of the medial habenula, (e) the somatic motor and autonomic cells of cranial nerves 3-7 and 9-12, as well as perikarya in the dorsal and ventral cochlear nuclei presumably giving rise to efferent fibers of cranial nerve 8, and (f) the alpha-motor and gamma-efferent motor neurons of the spinal cord. In addition, the mRNA for the VAChT was found in a few somata, probably ectopically located cells of the basal nuclear complex, in the internal capsule, central nucleus of the amygdala, entopeduncular nucleus, and zona incerta. It was also detected in some cell bodies in the reticular part of the substantia nigra, probably the rostral extension of the mesopontine complex, in the parabigeminal nucleus, and around the central canal in the spinal cord but not in cortical, hippocampal, and cerebellar perikarya. It is concluded that, like choline acetyltransferase, the mRNA for the putative acetylcholine vesicular transporter is another specific marker for neurons utilizing acetylcholine as a neurotransmitter. Further investigations of that transporter could have important implications for various diseases involving cholinergic systems, such as Alzheimers disease.


Neuroscience Letters | 1996

Vesicular monoamine transporter 2 expression in enteric neurons and enterochromaffin-like cells of the rat

Roberto De Giorgio; Dennis Su; Doris Peter; Robert H. Edwards; Nicholas C. Brecha; Catia Sternini

The cellular localization of the vesicular monoamine transporter 2 (VMAT2) in the rat digestive tract was investigated with immunohistochemistry. VMAT2-immunoreactivity (IR) was localized to neurons and fibers of enteric and pancreatic ganglia, to processes supplying the gut wall, the pancreas and blood vessels, and to enterochromaffin-like (ECL) cells in the gastric corpus, which contained calbindin-IR. Few VMAT2-IR cells were also found in the gastric antrum, but they did not contain gastrin-IR. VMAT2-IR was expressed in extrinsic sympathetic fibers as demonstrated by the elimination of a portion of VMAT2-IR processes by sympathectomy. The VMAT2-IR pattern is consistent with the overall distribution of biogenic amine cell groups in the digestive tract. Our results provide further evidence that VMAT2 is the vesicular amine transporter responsible for accumulation of monoamines into secretory vesicles of monoaminergic neurons and ECL cells.

Collaboration


Dive into the Robert H. Edwards's collaboration.

Top Co-Authors

Avatar

Ali Roghani

University of California

View shared research outputs
Top Co-Authors

Avatar

Doris Peter

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Justin D. Oh

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nancy J. Woolf

University of California

View shared research outputs
Top Co-Authors

Avatar

Yongjian Liu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shimon Schuldiner

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Yoav Adam

Hebrew University of Jerusalem

View shared research outputs
Researchain Logo
Decentralizing Knowledge