Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert H. Shoemaker is active.

Publication


Featured researches published by Robert H. Shoemaker.


Cancer Research | 2005

Echinomycin, a Small-Molecule Inhibitor of Hypoxia-Inducible Factor-1 DNA-Binding Activity

Dehe Kong; Eun-Jung Park; Andrew G. Stephen; Maura Calvani; John H. Cardellina; Anne Monks; Robert J. Fisher; Robert H. Shoemaker; Giovanni Melillo

The identification of small molecules that inhibit the sequence-specific binding of transcription factors to DNA is an attractive approach for regulation of gene expression. Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that controls genes involved in glycolysis, angiogenesis, migration, and invasion, all of which are important for tumor progression and metastasis. To identify inhibitors of HIF-1 DNA-binding activity, we expressed truncated HIF-1alpha and HIF-1beta proteins containing the basic-helix-loop-helix and PAS domains. Expressed recombinant HIF-1alpha and HIF-1beta proteins induced a specific DNA-binding activity to a double-stranded oligonucleotide containing a canonical hypoxia-responsive element (HRE). One hundred twenty-eight compounds previously identified in a HIF-1-targeted cell-based high-throughput screen of the National Cancer Institute 140,000 small-molecule library were tested in a 96-well plate ELISA for inhibition of HIF-1 DNA-binding activity. One of the most potent compounds identified, echinomycin (NSC-13502), a small-molecule known to bind DNA in a sequence-specific fashion, was further investigated. Electrophoretic mobility shift assay experiments showed that NSC-13502 inhibited binding of HIF-1alpha and HIF-1beta proteins to a HRE sequence but not binding of the corresponding proteins to activator protein-1 (AP-1) or nuclear factor-kappaB (NF-kappaB) consensus sequences. Interestingly, chromatin immunoprecipitation experiments showed that NSC-13502 specifically inhibited binding of HIF-1 to the HRE sequence contained in the vascular endothelial growth factor (VEGF) promoter but not binding of AP-1 or NF-kappaB to promoter regions of corresponding target genes. Accordingly, NSC-13502 inhibited hypoxic induction of luciferase in U251-HRE cells and VEGF mRNA expression in U251 cells. Our results indicate that it is possible to identify small molecules that inhibit HIF-1 DNA binding to endogenous promoters.


Cancer Research | 2004

Topoisomerase I-mediated inhibition of hypoxia-inducible factor 1: mechanism and therapeutic implications.

Annamaria Rapisarda; Badarch Uranchimeg; Olivier Sordet; Yves Pommier; Robert H. Shoemaker; Giovanni Melillo

We have shown previously that the camptothecin analogue topotecan (TPT), a topoisomerase I (Top 1) poison, inhibits hypoxia-inducible factor 1 (HIF-1) transcriptional activity and HIF-1α protein accumulation in hypoxia-treated U251 human glioma cells. In this article, we demonstrate that TPT does not affect HIF-1α protein half-life or mRNA accumulation but inhibits its translation. In addition, we demonstrate that Top 1 is required for the inhibition of HIF-1α protein accumulation by TPT as shown by experiments performed using camptothecin-resistant cell lines with known Top 1 alterations. Experiments performed with aphidicolin indicated that TPT inhibited HIF-1 protein accumulation in the absence of DNA replication. DNA-damaging agents, such as ionizing radiation and doxorubicin, did not affect HIF-1α protein accumulation. Ongoing transcription was essential for the inhibition of HIF-1α protein accumulation by TPT. Our results demonstrate the existence of a novel pathway connecting Top 1-dependent signaling events and the regulation of HIF-1α protein expression and function. In addition, our findings dissociate the cytotoxic activity of TPT from the inhibition of the HIF-1 pathway and raise the possibility of novel clinical applications of TPT aimed at targeting HIF-1-dependent responses.


Clinical Cancer Research | 2007

Nelfinavir, A lead HIV protease inhibitor, is a broad-spectrum, anticancer agent that induces endoplasmic reticulum stress, autophagy, and apoptosis in vitro and in vivo

Joell J. Gills; Jaclyn LoPiccolo; Junji Tsurutani; Robert H. Shoemaker; Carolyn J.M. Best; Mones Abu-Asab; Jennifer P. Borojerdi; Noel A. Warfel; Erin R. Gardner; Matthew Danish; M. Christine Hollander; Shigeru Kawabata; Maria Tsokos; William D. Figg; Patricia S. Steeg; Phillip A. Dennis

Purpose: The development of new cancer drugs is slow and costly. HIV protease inhibitors are Food and Drug Administration approved for HIV patients. Because these drugs cause toxicities that can be associated with inhibition of Akt, an emerging target in cancer, we assessed the potential of HIV protease inhibitors as anticancer agents. Experimental Design: HIV protease inhibitors were screened in vitro using assays that measure cellular proliferation, apoptotic and nonapoptotic cell death, endoplasmic reticulum (ER) stress, autophagy, and activation of Akt. Nelfinavir was tested in non–small cell lung carcinoma (NSCLC) xenografts with biomarker assessment. Results: Three of six HIV protease inhibitors, nelfinavir, ritonavir, and saquinavir, inhibited proliferation of NSCLC cells, as well as every cell line in the NCI60 cell line panel. Nelfinavir was most potent with a mean 50% growth inhibition of 5.2 μmol/L, a concentration achievable in HIV patients. Nelfinavir caused two types of cell death, caspase-dependent apoptosis and caspase-independent death that was characterized by induction of ER stress and autophagy. Autophagy was protective because an inhibitor of autophagy increased nelfinavir-induced death. Akt was variably inhibited by HIV protease inhibitors, but nelfinavir caused the greatest inhibition of endogenous and growth factor–induced Akt activation. Nelfinavir decreased the viability of a panel of drug-resistant breast cancer cell lines and inhibited the growth of NSCLC xenografts that was associated with induction of ER stress, autophagy, and apoptosis. Conclusions: Nelfinavir is a lead HIV protease inhibitor with pleiotropic effects in cancer cells. Given its wide spectrum of activity, oral availability, and familiarity of administration, nelfinavir is a Food and Drug Administration–approved drug that could be repositioned as a cancer therapeutic.


International Journal of Cancer | 1996

Overlapping phenotypes of multidrug resistance among panels of human cancer‐cell lines

Miguel A. Izquierdo; Robert H. Shoemaker; Marcel J. Flens; George L. Scheffer; Lin Wu; Tanya R. Prather; Rik J. Scheper

In addition to P‐glycoprotein (Pgp), 2 proteins related to multidrug resistance (MDR) have recently been described. The Multidrug‐Resistance‐associated protein (MRP) is one of the ATP‐binding‐cassette (ABC) transporters. The Lung‐Resistance Protein (LRP) is the major component of human vaults, which are newly described cellular organelles and thought to mediate intracellular transport processes. Using immunocytochemical methods, we have examined the expression of MRP and LRP among panels of human cancer‐cell lines not selected for drug resistance which have been previously characterized for expression of Pgp, and in vitro response to a variety of anti‐cancer drugs. Expression of MRP and LRP was observed in 47/55 (87%) and 46/59 (78%) cell lines, respectively. Statistically significant correlations were observed between expression of each of these 3 proteins and in vitro sensitivity to at least one drug classically associated with MDR. LRP showed the greatest individual predictive value, which also applied to several non‐classical MDR drugs. Co‐expression of 2–3 MDR‐related proteins was observed in 64% of the lines and was, in general, associated with high relative levels of drug resistance. Previously identified “classic” MDR lines as well as “pan‐resistant” lines concurrently expressed all 3 MDR‐related proteins. Some highly drug‐resistant cell lines without detectable MDRI/Pgp were found to express relatively high levels of MRP and LRP. The high prevalence of MRP and LRP expression observed in this large set of cell lines, which have not been subjected to laboratory drug selection, suggests that MDR mechanisms associated with these proteins may be widespread in human malignancies. Moreover, the overlapping of these more recently recognized MDR phenotypes with Pgp‐type MDR results in a complex phenotype, the understanding of which may be of importance in the development of new drugs and design of clinical treatment protocols, particularly those seeking to employ strategies to reverse the MDR phenotype.


Cancer Research | 2004

Schedule-dependent Inhibition of Hypoxia-inducible Factor-1α Protein Accumulation, Angiogenesis, and Tumor Growth by Topotecan in U251-HRE Glioblastoma Xenografts

Annamaria Rapisarda; Jessica Zalek; Melinda G. Hollingshead; Till Braunschweig; Badarch Uranchimeg; Carrie Bonomi; Suzanne Borgel; John Carter; Stephen M. Hewitt; Robert H. Shoemaker; Giovanni Melillo

We have previously shown that topotecan, a topoisomerase I poison, inhibits hypoxia-inducible factor (HIF)-1α protein accumulation by a DNA damage-independent mechanism. Here, we report that daily administration of topotecan inhibits HIF-1α protein expression in U251-HRE glioblastoma xenografts. Concomitant with HIF-1α inhibition, topotecan caused a significant tumor growth inhibition associated with a marked decrease of angiogenesis and expression of HIF-1 target genes in tumor tissue. These results provide a compelling rationale for testing topotecan in clinical trials to target HIF-1 in cancer patients.


Molecular Cancer Therapeutics | 2009

Increased antitumor activity of bevacizumab in combination with hypoxia inducible factor-1 inhibition

Annamaria Rapisarda; Melinda G. Hollingshead; Badarch Uranchimeg; Carrie Bonomi; Suzanne Borgel; John Carter; Bradley Gehrs; Mark Raffeld; Robert J. Kinders; Ralph E. Parchment; Miriam R. Anver; Robert H. Shoemaker; Giovanni Melillo

Inhibition of hypoxia inducible factor-1 (HIF-1) is an attractive therapeutic strategy to target the tumor microenvironment. However, HIF-1 inhibitors may have limited activity as single agents and combination therapies may be required. We tested the hypothesis that HIF-1 inhibition in a hypoxic-stressed tumor microenvironment, which could be generated by administration of antiangiogenic agents, may result in a more pronounced therapeutic effect. The activity of bevacizumab, either alone or in combination with the HIF-1α inhibitor topotecan, was evaluated in U251-HRE xenografts. Tumor tissue was collected at the end of treatment and changes in tumor oxygenation, angiogenesis, proliferation, apoptosis, HIF-1α levels, HIF-1 target genes, and DNA damage were evaluated. Bevacizumab decreased microvessel-density and increased intratumor-hypoxia, but did not induce apoptosis. Moreover, bevacizumab alone caused a significant increase of HIF-1–dependent gene expression in tumor tissue. Addition of a low dose of daily topotecan to bevacizumab significantly inhibited tumor growth, relative to mice treated with topotecan or bevacizumab alone (P < 0.01). The addition of topotecan to bevacizumab was also associated with profound inhibition of HIF-1 transcriptional activity, significant inhibition of proliferation, and induction of apoptosis. Importantly, DNA damage induced by topotecan alone was not augmented by addition of bevacizumab, suggesting that increased cytotoxic activity did not account for the increased antitumor effects observed. These results strongly suggest that combination of anti–vascular endothelial growth factor antibodies with HIF-1 inhibitors is an attractive therapeutic strategy targeting in the hypoxic tumor microenvironment. [Mol Cancer Ther 2009;8(7):1867–77]


Journal of the National Cancer Institute | 2011

Novel Effect of Antihelminthic Niclosamide on S100A4-Mediated Metastatic Progression in Colon Cancer

Ulrike Sack; Wolfgang Walther; Dominic A. Scudiero; Mike Selby; Dennis Kobelt; Margit Lemm; Iduna Fichtner; Peter M. Schlag; Robert H. Shoemaker; Ulrike Stein

BACKGROUND Metastasis formation in colon cancer severely reduces the survival rate in patients. S100A4, a calcium-binding protein, is implicated in promoting metastasis formation in colon cancer. METHODS To identify a transcription inhibitor of S100A4, high-throughput screening of 1280 pharmacologically active compounds was performed using a human colon cancer cell line expressing a S100A4 promoter-driven luciferase (LUC) reporter gene construct (HCT116-S1004p-LUC). Niclosamide, an antihelminthic agent, was identified as a potential candidate. Colon cancer cell lines (HCT116, SW620, LS174T, SW480, and DLD-1) were treated with 1 μM niclosamide to analyze the effect on S100A4 mRNA and protein expression by quantitative reverse transcription-polymerase chain reaction and immunoblot assays, and effects on cell migration, invasion, proliferation, and colony formation were also assessed in vitro. The effect of niclosamide on liver metastasis was assessed in a xenograft mouse model of human colon cancer (n = 8 mice) by in vivo imaging. The long-term effect of niclosamide on metastasis formation after discontinued treatment was quantified by scoring, and overall survival (n = 12 mice) was analyzed by Kaplan-Meier method after discontinuation of treatment. All statistical tests were two-sided. RESULTS Reduced S100A4 mRNA and protein expression, and inhibited cell migration, invasion, proliferation, and colony formation were observed in niclosamide-treated colon cancer cells in vitro. In vivo imaging of niclosamide-treated mice showed reduced liver metastasis compared with solvent-treated control mice (n = 4 mice per group). Compared with the control group, discontinuation of treatment for 26 days showed reduced liver metastasis formation in mice (n = 6 mice per group) (control vs discontinuous treatment, mean metastasis score = 100% vs 34.9%, mean difference = 65.1%; 95% confidence interval [CI] = 18.4% to 111.9%, P < .01) and increased overall survival (n = 6 mice per group; control vs discontinuous treatment, median survival = 24 vs 46.5 days, ratio = 0.52, 95% CI = 0.19 to 0.84, P = .001). CONCLUSION Niclosamide inhibits S100A4-induced metastasis formation in a mouse model of colon cancer and has therapeutic potential.


Journal of Medicinal Chemistry | 2008

New antitumor imidazo[2,1-b]thiazole guanylhydrazones and analogues.

Aldo Andreani; Silvia Burnelli; Massimiliano Granaiola; Alberto Leoni; Alessandra Locatelli; Rita Morigi; Mirella Rambaldi; Lucilla Varoli; Natalia Calonghi; Concettina Cappadone; Giovanna Farruggia; Maddalena Zini; Claudio Stefanelli; Lanfranco Masotti; Norman S. Radin; Robert H. Shoemaker

The synthesis of new antitumor 6-substituted imidazothiazole guanylhydrazones is described. Moreover, a series of compounds with a different basic chain at the 5 position were prepared. Finally, the replacement of the thiazole ring in the imidazothiazole system was also considered. All the new compounds prepared were submitted to the NCI cell line screen for evaluation of their antitumor activity. A few selected compounds were submitted to additional biological studies concerning effects on the cell cycle, apoptosis, and mitochondria.


Nucleic Acids Research | 2006

Complex interactions of HIV-1 nucleocapsid protein with oligonucleotides

Robert J. Fisher; Matthew J. Fivash; Andrew G. Stephen; Nathan A. Hagan; Shilpa R. Shenoy; Maxine V. Medaglia; Lindsey R. Smith; Karen M. Worthy; John T. Simpson; Robert H. Shoemaker; Karen Larson McNitt; Donald G. Johnson; Catherine V. Hixson; Robert J. Gorelick; Daniele Fabris; Louis E. Henderson; Alan Rein

The HIV-1 nucleocapsid (NC) protein is a small, basic protein containing two retroviral zinc fingers. It is a highly active nucleic acid chaperone; because of this activity, it plays a crucial role in virus replication as a cofactor during reverse transcription, and is probably important in other steps of the replication cycle as well. We previously reported that NC binds with high-affinity to the repeating sequence d(TG)n. We have now analyzed the interaction between NC and d(TG)4 in considerable detail, using surface plasmon resonance (SPR), tryptophan fluorescence quenching (TFQ), fluorescence anisotropy (FA), isothermal titration calorimetry (ITC) and electrospray ionization Fourier transform mass spectrometry (ESI-FTMS). Our results show that the interactions between these two molecules are surprisngly complex: while the Kd for binding of a single d(TG)4 molecule to NC is only ∼5 nM in 150 mM NaCl, a single NC molecule is capable of interacting with more than one d(TG)4 molecule, and conversely, more than one NC molecule can bind to a single d(TG)4 molecule. The strengths of these additional binding reactions are quantitated. The implications of this multivalency for the functions of NC in virus replication are discussed.


Stem Cells | 2010

Complex display of putative tumor stem cell markers in the NCI60 tumor cell line panel.

Christina H. Stuelten; Susan D. Mertins; Johanna I. Busch; Meghan Gowens; Dominic A. Scudiero; Mark W. Burkett; Karen M. Hite; Mike Alley; Melinda G. Hollingshead; Robert H. Shoemaker; John E. Niederhuber

Tumor stem cells or cancer initiating cells (CICs) are single tumor cells that can regenerate a tumor or a metastasis. The identification and isolation of CICs remain challenging, and a variety of putative CIC markers have been described. We hypothesized that cell lines of the NCI60 panel contain CICs and express putative CIC markers. We investigated expression of putative CIC surface markers (CD15, CD24, CD44, CD133, CD166, CD326, PgP) and the activity of aldehyde dehydrogenase in the NCI60 panel singly and in combination by six‐color fluorescence‐activated cell sorting analysis. All investigated markers were expressed in cell lines of the NCI60 panel. Expression levels of individual markers varied widely across the 60 cell lines, and neither single marker expression nor simple combinations nor co‐expression patterns correlated with the colony‐formation capacity of cell lines. Rather, marker expression patterns correlated with tumor types in multidimensional analysis. Whereas some expression patterns correlated with tumor entities such as basal breast cancer, other expression patterns occurred across different tumor types and largely related to expression of a more mesenchymal phenotype in individual breast, lung, renal, and melanoma cell lines. Our data for the first time demonstrate that tumor cell lines display CIC markers in a complex pattern that relates to the tumor type. The complexity and tumor type specificity of marker display creates challenges for the application of cell sorting and other approaches to isolation of putative tumor stem cell populations and suggests that therapeutic targeting strategies will need to take this into account. STEM CELLS 2010;28:649–66028:649–660

Collaboration


Dive into the Robert H. Shoemaker's collaboration.

Top Co-Authors

Avatar

Dominic A. Scudiero

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Michael R. Boyd

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Monks

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Shizuko Sei

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Yves Pommier

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Giovanni Melillo

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

James B. McMahon

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Andrew Jobson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Michael J. Currens

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge