Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert H. Tukey is active.

Publication


Featured researches published by Robert H. Tukey.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Control of steroid, heme, and carcinogen metabolism by nuclear pregnane X receptor and constitutive androstane receptor

Wen Xie; Mei-Fei Yeuh; Anna Radominska-Pandya; Simrat P. S. Saini; Yoichi Negishi; Bobbie Sue Bottroff; Geraldine Y. Cabrera; Robert H. Tukey; Ronald M. Evans

Through a multiplex promoter spanning 218 kb, the phase II UDP-glucuronosyltransferase 1A (UGT1) gene encodes at least eight differently regulated mRNAs whose protein products function as the principal means to eliminate a vast array of steroids, heme metabolites, environmental toxins, and drugs. The orphan nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) were originally identified as sensors able to respond to numerous environmentally derived foreign compounds (xenobiotics) to promote detoxification by phase I cytochrome P450 genes. In this report, we show that both receptors can induce specific UGT1A isoforms including those involved in estrogen, thyroxin, bilirubin, and carcinogen metabolism. Transgenic mice expressing a constitutively active form of human PXR show markedly increased UGT activity toward steroid, heme, and carcinogens, enhanced bilirubin clearance, as well as massively increased steroid clearance. The ability of PXR and constitutive androstane receptor and their ligands to transduce both the phase I and phase II adaptive hepatic response defines a unique transcriptional interface that bridges the ingestion and metabolism of environmental compounds to body physiology.


Journal of Biological Chemistry | 1998

EXPRESSION OF THE UDP-GLUCURONOSYLTRANSFERASE 1A LOCUS IN HUMAN COLON: IDENTIFICATION AND CHARACTERIZATION OF THE NOVEL EXTRAHEPATIC UGT1A8

Christian P. Strassburg; Michael P. Manns; Robert H. Tukey

UDP-glucuronosyltransferases (UGT) catalyze the conjugation of lipophilic exobiotic and endobiotic compounds, which leads to the excretion of hydrophilic glucuronides via bile or urine. By a mechanism of exon sharing, the transcripts of individual first exon cassettes located at the 5′ end of the human UGT1Alocus are spliced to exons 2–5, leading to the expression of at least nine individual UGT genes. Recently, the tissue-specific expression of the UGT1A locus has been demonstrated in extrahepatic tissue, leading to the identification of UGT1A7 and UGT1A10 mRNA (Strassburg, C. P., Oldhafer, K., Manns, M. P., and Tukey, R. H. (1997) Mol. Pharmacol. 52, 212). However,UGT1A expression has not been defined in human colon, which is a metabolically active, external surface organ and a common route of drug administration. UGT1A expression was analyzed in 5 colonic, 16 hepatic, 4 biliary, and 13 gastric human tissue specimens by quantitative duplex reverse transcription-polymerase chain reaction and Western blot analysis, demonstrating lower UGT1A mRNA in the extrahepatic tissues. The precise analysis of unique UGT1A transcripts by exon 1-specific duplex reverse transcription-polymerase chain reaction revealed the expression of UGT1A1, UGT1A3, UGT1A4, UGT1A6, and UGT1A9 in the colon, which are also present in human liver. In addition, the expression of extrahepatic UGT1A10 and UGT1A8 was demonstrated. UGT1A8 was found to be closely related to gastric UGT1A7 with a 93.8% identity of first exon sequences. Expressed UGT1A7 and UGT1A10 protein showed unique catalytic activity profiles, while UGT1A8 was not active with the substrates tested. The ability of UGT1A10 to glucuronidate estrone represents only the second example of a human estrone UGT. The highly related human UGT1A7–1A10 cluster is expressed in a tissue-specific fashion and underlines the role and diversity of physiological glucuronidation at the distal end of the digestive tract.


Journal of Biological Chemistry | 2000

Polymorphic Gene Regulation and Interindividual Variation of UDP-glucuronosyltransferase Activity in Human Small Intestine

Christian P. Strassburg; Susanne Kneip; Juliane Topp; Petra Obermayer-Straub; Ayse Barut; Robert H. Tukey; Michael P. Manns

UDP-glucuronosyltransferases (UGTs) convert dietary constituents, drugs, and environmental mutagens to inactive hydrophilic glucuronides. Recent studies have shown that the expression of the UGT1 and UGT2 gene families is regulated in a tissue-specific fashion. Human small intestine represents a major site of resorption of dietary constituents and orally administered drugs and plays an important role in extrahepatic UGT directed metabolism. Expression of 13 UGT1A and UGT2Bgenes coupled with functional and catalytic analyses were studied using 18 small intestinal and 16 hepatic human tissue samples. Hepatic expression of UGT gene transcripts was without interindividual variation. In contrast, a polymorphic expression pattern of all the UGT genes was demonstrated in duodenal, jejunal, and ileal mucosa, with the exception of UGT1A10.To complement these studies, interindividual expression of UGT proteins and catalytic activities were also demonstrated. Hyodeoxycholic acid glucuronidation, catalyzed primarily by UGT2B4 and UGT2B7, showed a 7-fold interindividual variation in small intestinal duodenal samples, in contrast to limited variation in the presence of 4-methylumbelliferone, a substrate glucuronidated by mostUGT1A and UGT2B gene products. Linkage of RNA expression patterns to protein abundance were also made with several mono-specific antibodies to the UGTs. These results are in contrast to a total absence of polymorphic variation in gene expression, protein abundance, and catalytic activity in liver. In addition, the small intestine exhibits considerable catalytic activity toward most of the different classes of substrates accepted for glucuronidation by the UGTs, which is supported by immunofluorescence analysis of UGT1A protein in the mucosal cell layer of the small intestine. Thus, tissue-specific and interindividual polymorphic regulation ofUGT1A and UGT2B genes in small intestine is identified and implicated as molecular biological determinant contributing to interindividual prehepatic drug and xenobiotic metabolism in humans.


Gastroenterology | 1999

UDP-glucuronosyltransferase activity in human liver and colon

Christian P. Strassburg; Nghia Nguyen; Michael P. Manns; Robert H. Tukey

BACKGROUND & AIMS The contribution of glucuronidation toward human drug metabolism is carried out by the Super gene family of UDP-glucuronosyltransferases (UGTs). Regulation of the human UGT1A locus is tissue specific, resulting in the unique expression of multiple hepatic and extrahepatic gene products. Studies were undertaken to examine UGT1A expression in human hepatic and colonic tissues. METHODS UGT1A messenger RNA, protein, catalytic activity, and substrate kinetics were studied in 5 samples of normal hepatic and sigmoid colon tissue using duplex reverse-transcription polymerase chain reaction (RT-PCR), enzymatic and Western blot analysis, and indirect immunofluorescence analysis. RESULTS Specific patterns of UGT1A gene expression occur in the liver and colon, which were consistent with different banding patterns as detected by Western blot analysis using a UGT1A-specific antibody. However, microsomal UGT activities in colon were up to 96-fold lower for many phenolic substrates, a finding that was not concordant with RT-PCR and Western blot analysis. Interestingly, UGT activity toward tertiary amines and some steroid hormones was equal. CONCLUSIONS Differences of glucuronidation activity between human liver and colon suggest that UGT1A activity may be regulated as a result of the relative presence of individual isoforms with differing catalytic activities or by tissue-specific modulators after gene expression.


British Journal of Pharmacology | 2001

Glucuronide and glucoside conjugation of mycophenolic acid by human liver, kidney and intestinal microsomes

Maria Shipkova; Christian P. Strassburg; Felix Braun; F. Streit; H. J. Gröne; Victor W. Armstrong; Robert H. Tukey; Michael Oellerich; Eberhard Wieland

Mycophenolic acid (MPA) is primarily metabolized to a phenolic glucuronide (MPAG) as well as to two further minor metabolites: an acyl glucuronide (AcMPAG) and a phenolic glucoside (MPAG1s). This study presents investigations of the formation of these metabolites by human liver (HLM), kidney (HKM), and intestinal (HIM) microsomes, as well as by recombinant UDP‐glucuronosyltransferases. HLM (n=5), HKM (n=6), HIM (n=5) and recombinant UGTs were incubated in the presence of either UDP‐glucuronic acid or UDP‐glucose and various concentrations of MPA. Metabolite formation was followed by h.p.l.c. All microsomes investigated formed both MPAG and AcMPAG. Whereas the efficiency of MPAG formation was greater with HKM compared to HLM, AcMPAG formation was greater with HLM than HKM. HIM showed the lowest glucuronidation efficiency and the greatest interindividual variation. The capacity for MPAGls formation was highest in HKM, while no glucoside was detected with HIM. HKM produced a second metabolite when incubated with MPA and UDP‐glucose, which was labile to alkaline treatment. Mass spectrometry of this metabolite in the negative ion mode revealed a molecular ion of m/z 481 compatible with an acyl glucoside conjugate of MPA. All recombinant UGTs investigated were able to glucuronidate MPA with KM values ranging from 115.3 to 275.7 μM l−1 and Vmax values between 29 and 106 pM min−1 mg protein−1. Even though the liver is the most important site of MPA glucuronidation, extrahepatic tissues particularly the kidney may play a significant role in the overall biotransformation of MPA in man. Only kidney microsomes formed a putative acyl glucoside of MPA.


Journal of Biological Chemistry | 2007

Nrf2-Keap1 Signaling Pathway Regulates Human UGT1A1 Expression in Vitro and in Transgenic UGT1 Mice

Mei-Fei Yueh; Robert H. Tukey

The formation of β-d-glucopyranosides (glucuronides) by the UDP-glucuronosyltransferases (UGTs) is a significant metabolic pathway that facilitates the elimination of small hydrophobic molecules such as drugs, dietary constituents, steroids, and bile acids. We elucidate here that an anti-oxidative response leads to induction of UGT1A1 through the Nrf2-Keap1 pathway. When human HepG2 cells were treated with the prooxidants tert-butylhydroquinone and β-naphthoflavone, cellular UGT1A1 glucuronidation activities were increased. The induction of UGT1A1 proceeded following the overexpression of Nrf2 and was blocked following overexpression of Keap1, demonstrating that Keap1 suppresses Nrf2 activation of the UGT1A1 gene. Loss of function analysis for Nrf2 conducted by small interfering RNA revealed that induction of UGT1A1 was not seen in Nrf2 knock-out cells. To examine the contribution of oxidants toward the regulation of human UGT1A1 in vivo, transgenic mice bearing the human UGT1 locus (Tg-UGT1) were treated with tert-butylhydroquinone. Human UGT1A1 was markedly increased in small and large intestines as well as in liver. Gene mapping experiments including transfections of UGT1A1 reporter gene constructs into HepG2 cells coupled with functional analysis of Nrf2 expression and binding to anti-oxidant-response elements (ARE) resulted in identification of an ARE in the phenobarbital-response enhancer module region of the UGT1A1 gene. The ARE flanks the recently identified Ah receptor xenobiotic-responsive element. The results suggest that Nrf2-Keap1-dependent UGT1A1 induction by prooxidants might represent a key adaptive response to cellular oxidative stress that defends against a variety of environmental insults, including electrophile attacks and chemical carcinogenesis.


Gut | 2002

Polymorphisms of the human UDP-glucuronosyltransferase (UGT) 1A7 gene in colorectal cancer

Christian P. Strassburg; Arndt Vogel; Susanne Kneip; Robert H. Tukey; Michael P. Manns

Background: Genetic polymorphisms in the human UDP-glucuronosyltransferase-1A7 (UGT1A7) gene are detected and significantly correlated with sporadic colorectal carcinoma. UGT1A7, which has recently been demonstrated to glucuronidate environmental carcinogens, is now implicated as a cancer risk gene. A silent mutation at codon 11 and missense mutations at codons 129, 131, and 208 lead to the description of three polymorphic alleles designated UGT1A7*2, UGT1A7*3, and UGT1A7*4. Methods: UGT1A7 polymorphisms were analysed by polymerase chain reaction amplification and sequencing, as well as temperature gradient gel electrophoresis in 210 healthy blood donors and 78 subjects with colorectal cancer. Results: Homozygous wild-type UGT1A7 alleles were present in 20% of normal controls but were only detected in 9% of patients with colorectal carcinoma (odds ratio (OR) 0.39 (95% confidence interval (CI) 0.17–0.92); p=0.03). Analysis of individual polymorphic alleles identified a highly significant association between the presence of UGT1A7*3 alleles and colorectal cancer (OR 2.75 (95% CI 1.6 – 4.71); p<0.001). Recombinant expression of UGT1A7 polymorphic cDNA in eukaryotic cell culture showed reduced carcinogen glucuronidation activity in comparison with wild-type UGT1A7. UGT1A7 may therefore represent a modifier gene in colorectal carcinogenesis. Conclusion: We have identified a potential novel risk factor in sporadic colorectal cancer which may contribute to the identification of risk groups and to the elucidation of factors involved in colon carcinogenesis.


Journal of Biological Chemistry | 2005

Tissue-specific, Inducible, and Hormonal Control of the Human UDP-Glucuronosyltransferase-1 (UGT1) Locus

Shujuan Chen; Deirdre Beaton; Nghia Nguyen; Kathy Senekeo-Effenberger; Erin Brace-Sinnokrak; Upendra A. Argikar; Rory P. Remmel; Jocelyn Trottier; Olivier Barbier; Joseph K. Ritter; Robert H. Tukey

The human UDP-glucuronosyltransferase 1 (UGT1) locus spans nearly 200 kb on chromosome 2 and encodes nine UGT1A proteins that play a prominent role in drug and xenobiotic metabolism. Transgenic UGT1 (Tg-UGT1) mice have been created, and it has been demonstrated that tissue-specific and xenobiotic receptor control of the UGT1A genes is influenced through circulating humoral factors. In Tg-UGT1 mice, the UGT1A proteins are differentially expressed in the liver and gastrointestinal tract. Gene expression profiles confirmed that all of the UGT1A genes can be targeted for regulation by the pregnane X receptor activator pregnenolone-16α-carbonitrile (PCN) or the Ah receptor ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In addition, the selective induction of glucuronidation activity toward lamotrigine, ethinyl estradiol, chenodeoxycholic acid, and lithocholic acid by either PCN or TCDD in small intestine from Tg-UGT1 mice corresponded to expression of the locus in this tissue. Induction of UGT1A1 by PCN and TCDD is believed to be highly dependent upon glucocorticoids, because submicromolar concentrations of dexamethasone actively promote PCN and TCDD induction of UGT1A1 in Tg-UGT1 primary hepatocytes. The role of hormonal control of the UGT1 locus was further verified in pregnant and nursing Tg-UGT1 mice. In maternal 14-day post-conception Tg-UGT1mice, liver UGT1A1, UGT1A4, and UGT1A6 were induced, with the levels returning to near normal by birth. However, maternal liver UGT1A4 and UGT1A6 were dramatically elevated and maintained after birth, indicating that these proteins may play a critical role in maternal metabolism during lactation. With expression of the UGT1 locus confirmed in a variety of mouse tissues, these results suggested that the Tg-UGT1 mice will be a useful model to examine the regulatory and functional properties of human glucuronidation.


Pharmacogenetics | 1992

Caffeine as a probe for human cytochromes P450: validation using cDNA-expression, immunoinhibition and microsomal kinetic and inhibitor techniques.

Wichittra Tassaneeyakul; Zahurin Mohamed; Donald J. Birkett; Michael E. McManus; Maurice E. Veronese; Robert H. Tukey; Linda C. Quattrochi; Frank J. Gonzalez; John O. Miners

The molecular basis for the use of caffeine (CA; 1,3,7-trimethylxanthine) as a probe for specific human cytochromes P450 has been investigated. The CA 1-, 3- and 7-demethylations (to form theobromine, paraxanthine and theophylline, respectively) all followed biphasic kinetics in human liver microsomes. Mean apparent Km values for the high- and low-affinity components of the demethylations ranged from 0.13-0.31 nM and 19.2-30.0 mM, respectively. cDNA-expressed CYP1A2 catalysed all three CA demethylations, and the apparent Km for CA 3-demethylation (the major metabolic pathway in humans) by the expressed enzyme was similar to the Km for the high-affinity liver microsomal CA 3-demethylase. IC50 values for inhibition of the CA demethylations by alpha-naphthoflavone were similar for both expressed CYP1A2 and the high-affinity microsomal demethylases. Moreover, CA was a competitive inhibitor of expressed CYP1A2 catalysed phenacetin O-deethylation, with the apparent Ki (0.080 mM) closely matching the apparent Km (0.082 mM) for CA 3-demethylation by the expressed enzyme. Expressed CYP1A1 was additionally shown to catalyse the 3-demethylation of CA, although activity was lower than that observed for CYP1A2. While these data indicate that CYP1A2 is responsible for the high-affinity component of human liver CA 3-demethylation, two limitations associated with the use of CA as an in vitro probe for CYP1A2 activity have been identified: (i) CA 3-demethylation reflects hepatic CYP1A2 activity only at appropriately low substrate concentrations; and (ii) CA is a non-specific CYP1A substrate and CYP1A1 may therefore contribute to CA 3-demethylase activity in tissues in which it is expressed. An anti-CYP3A antibody essentially abolished the 8-hydroxylation of CA to form trimethyluric acid, suggesting formation of this metabolite may potentially serve as a marker of CYP3A isozyme(s) activity.


Drug Metabolism and Disposition | 2006

Expression of the human UGT1 locus in transgenic mice by 4-chloro-6-(2,3-xylidino)-2-pyrimidinylthioacetic acid (WY-14643) and implications on drug metabolism through peroxisome proliferator-activated receptor α activation

Kathy Senekeo-Effenberger; Shujuan Chen; Erin Brace-Sinnokrak; Jessica A. Bonzo; Mei-Fei Yueh; Upendra A. Argikar; Jenny Kaeding; Jocelyn Trottier; Rory P. Remmel; Joseph K. Ritter; Olivier Barbier; Robert H. Tukey

The UDP-glucuronosyltransferase (UGT) 1A genes in humans have been shown to be differentially regulated in a tissue-specific fashion. Transgenic mice carrying the human UGT1 locus (Tg-UGT1) were recently created, demonstrating that expression of the nine UGT1A genes closely resembles the patterns of expression observed in human tissues. In the present study, UGT1A1, UGT1A3, UGT1A4, and UGT1A6 have been identified as targets of the peroxisome proliferator-activated receptor (PPAR) α in human hepatocytes and Tg-UGT1 mice. Oral administration of the PPARα agonist 4-chloro-6-(2,3-xylidino)-2-pyrimidinylthioacetic acid (pirinixic acid, WY-14643) to Tg-UGT1 mice led to induction of these proteins in either the liver, gastrointestinal tract, or kidney. The levels of induced UGT1A3 gene transcripts in liver and UGT1A4 protein in small intestine correlated with induced lamotrigine glucuronidation activity in these tissues. With UGT1A3 previously identified as the major human enzyme involved in human C24-glucuronidation of lithocholic acid (LCA), the dramatic induction of liver UGT1A3 RNA in Tg-UGT1 mice was consistent with the formation of LCA-24G in plasma. Furthermore, PPAR-responsive elements (PPREs) were identified flanking the UGT1A1, UGT1A3, and UGT1A6 genes by a combination of site-directed mutagenesis, specific binding to PPARα and retinoic acid X receptor α, and functional response of the concatenated PPREs in HepG2 cells overexpressing PPARα. In conclusion, these results suggest that oral fibrate treatment in humans will induce the UGT1A family of proteins in the gastrointestinal tract and liver, influencing bile acid glucuronidation and first-pass metabolism of other drugs that are taken concurrently with hypolipidemic therapy.

Collaboration


Dive into the Robert H. Tukey's collaboration.

Top Co-Authors

Avatar

Shujuan Chen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nghia Nguyen

University of California

View shared research outputs
Top Co-Authors

Avatar

Mei-Fei Yueh

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Usha R. Pendurthi

University of Texas Health Science Center at Tyler

View shared research outputs
Top Co-Authors

Avatar

Eric F. Johnson

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jessica A. Bonzo

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge