Robert Haller-Dintelmann
Technische Universität Darmstadt
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert Haller-Dintelmann.
Publicacions Matematiques | 2016
Moritz Egert; Robert Haller-Dintelmann; Patrick Tolksdorf
On a domain
Weierstrass Institute for Applied Analysis and Stochastics: Preprint 1459 | 2011
Robert Haller-Dintelmann; Joachim Rehberg
\Omega \subseteq \mathbb{R}^d
Archive | 2007
Felix Ali Mehmeti; Robert Haller-Dintelmann; Virginie Régnier
we consider second order elliptic systems in divergence form with bounded complex coefficients, realized via a sesquilinear form with domain
Archive | 2012
F. Ali Mehmeti; Robert Haller-Dintelmann; Virginie Régnier
V \subseteq H^1(\Omega)
arXiv: Analysis of PDEs | 2013
F. Ali Mehmeti; Robert Haller-Dintelmann; Virginie Régnier
. Under very mild assumptions on
Applied Mathematics and Optimization | 2009
Robert Haller-Dintelmann; Christian M. Meyer; Joachim Rehberg; Anton Schiela
\Omega
Journal de Mathématiques Pures et Appliquées | 2008
Robert Haller-Dintelmann; Hans-Christoph Kaiser; Joachim Rehberg
and
Journal of The London Mathematical Society-second Series | 2006
Robert Haller-Dintelmann; Horst Heck; Matthias Hieber
V
Journal of Evolution Equations | 2015
Pascal Auscher; Nadine Badr; Robert Haller-Dintelmann; Joachim Rehberg
we show that the Kato Square Root Problem for such systems can be reduced to a regularity result for the fractional powers of the negative Laplacian in the same geometric setting. This extends an earlier result of McIntosh to non-smooth coefficients.
Journal of Functional Analysis | 2014
Moritz Egert; Robert Haller-Dintelmann; Patrick Tolksdorf
We show that elliptic second-order operators A of divergence type fulfill maximal parabolic regularity on distribution spaces, even if the underlying domain is highly non-smooth, the coefficients of A are discontinuous and A is complemented with mixed boundary conditions. Applications to quasilinear parabolic equations with non-smooth data are presented.