Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Henningsen is active.

Publication


Featured researches published by Robert Henningsen.


Science | 1995

Orphanin FQ: A neuropeptide that activates an opioidlike G protein-coupled receptor

Rainer K. Reinscheid; Hans Peter Nothacker; Anne Bourson; Ali Ardati; Robert Henningsen; James R. Bunzow; David K. Grandy; Hanno Langen; Frederick J. Monsma; Olivier Civelli

A heptadecapeptide was identified and purified from porcine brain tissue as a ligand for an orphan heterotrimeric GTP- binding protein (G protein)- coupled receptor (LC132) that is similar in sequence to opioid receptors. This peptide, orphanin FQ, has a primary structure reminiscent of that of opioid peptides. Nanomolar concentrations of orphanin FQ inhibited forskolin-stimulated adenylyl cyclase activity in cells transfected with LC132. This inhibitory activity was not affected by the addition of opioid ligands, nor did the peptide activate opioid receptors. Orphanin FQ bound to its receptor in a saturable manner and with high affinity. When injected intracerebroventricularly into mice, orphanin FQ caused a decrease in locomotor activity but did not induce analgesia in the hot-plate test. However, the peptide produced hyperalgesia in the tail-flick assay. Thus, orphanin FQ may act as a transmitter in the brain by modulating nociceptive and locomotor behavior.


Journal of Biological Chemistry | 1998

Structures that delineate orphanin FQ and dynorphin A pharmacological selectivities.

Rainer K. Reinscheid; Jacqueline Higelin; Robert Henningsen; Frederick J. Monsma; Olivier Civelli

Strict pharmacological selectivity in families of structurally related ligands and receptors may result from a key process in evolution aiming at increasing diversity in neurotransmission. An intriguing example of such exclusive specificity can be found in the newly discovered orphanin FQ (OFQ) system when it is compared with the opioid system. Both OFQ and its receptor share a high degree of sequence similarity to the opioid peptides and their corresponding receptors, respectively. However, OFQ does not activate opioid receptors, nor do the opioid peptides elicit biological activity at the OFQ receptor. We have therefore investigated the basis for the inherent selectivity of the primary structures of OFQ and dynorphin A, its closest counterpart. A series of truncated and/or chimeric peptides led to the conclusion that both peptides contain domains which establish their pharmacological selectivity. In the OFQ molecule we could delineate a domain that prevents its ability to activate the κ-opioid receptor by apparently repelling its binding. In both peptides the selectivity-generating domains are composed of single residues in key positions together with short stretches of amino acids which do not overlap. To prove this concept, we designed a universal agonist and found it active at both the OFQ receptor and the κ-opioid receptor. Our observations suggest that a coordinated mechanism of evolution has separated the orphanin FQ system from the opioid system.


British Journal of Pharmacology | 1998

Characterization of [3H]-(2S,2′R,3′R)-2-(2′,3′-dicarboxy- cyclopropyl)glycine ([3H]-DCG IV) binding to metabotropic mGlu2 receptor-transfected cell membranes

Jayne Cartmell; Geo Adam; Sylvie Chaboz; Robert Henningsen; John A. Kemp; Agnès Klingelschmidt; Veit Metzler; Frederick J. Monsma; Hervé Schaffhauser; Jürgen Wichmann; Vincent Mutel

The binding of the new selective group II metabotropic glutamate receptor radioligand, [3H]‐(2S,2′R,3′R)‐2‐(2′,3′‐dicarboxycyclopropyl)glycine ([3H]‐DCG IV), was characterized in rat mGlu2 receptor‐transfected CHO cell membranes. [3H]‐DCG IV binding was pH‐dependent, but was not sensitive to temperature. Saturation analysis showed the presence of a single binding site, with a Kd value of 160 nM and a Bmax value of 10 pmol mg−1 protein. Binding was not sensitive to Na+‐dependent glutamate uptake blockers or Cl−‐dependent glutamate binding inhibitors. Furthermore, up to concentrations of 1 mM, the glutamate ionotropic receptor agonists, N‐methyl‐D‐aspartic acid (NMDA), (S)‐α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA) and kainate, did not affect [3H]‐DCG IV binding. Of the compounds observed to inhibit [3H]‐DCG IV binding, the most potent were the recently described selective group II agonist, (+)‐2‐aminobicyclo‐[3.1.0]hexane‐2,6‐dicarboxylate (LY 354740; Ki value 16 nM) and antagonist, 2‐amino‐2‐(2‐carboxycyclopropan‐1‐yl)‐3‐(dibenzopyran‐4‐yl) propanoic acid (LY 341495; Ki value 19 nM). As expected, for a G‐protein‐coupled receptor, guanosine‐5′‐O‐(3‐thiotriphosphate) (GTPγS) inhibited [3H]‐DCG IV binding in a concentration‐dependent manner, with an IC50 value of 12 nM. A highly significant correlation was observed between the potencies of compounds able to inhibit [3H]‐DCG IV binding and potencies obtained for agonist activity in a GTPγ35S binding functional assay. In addition, these studies identified a number of compounds with previously unknown activity at mGlu2 receptors, including L(+)‐2‐amino‐3‐phosphonopropionic acid (L‐AP3), L(+)‐2‐amino‐5‐phosphonopentanoic acid (L‐AP5), 3‐((RS)‐2‐carboxypiperazin‐4‐yl)‐propyl‐1‐phosphonic acid (R‐CPP), N‐acetyl‐L‐aspartyl‐L‐glutamic acid (NAAG) and (RS)‐α‐methylserine‐O‐phosphate (MSOP).


British Journal of Pharmacology | 2010

AF-353, a novel, potent and orally bioavailable P2X3/P2X2/3 receptor antagonist

Joel R Gever; Rothschild Soto; Robert Henningsen; Renee Sharon Martin; David H Hackos; Sandip Panicker; Werner Rubas; Ian B Oglesby; Michael Patrick Dillon; Marcos E. Milla; Geoffrey Burnstock; Anthony P. D. W. Ford

Background and purpose:  Purinoceptors containing the P2X3 subunit (P2X3 homotrimeric and P2X2/3 heterotrimeric) are members of the P2X family of ion channels gated by ATP and may participate in primary afferent sensitization in a variety of pain‐related diseases. The current work describes the in vitro pharmacological characteristics of AF‐353, a novel, orally bioavailable, highly potent and selective P2X3/P2X2/3 receptor antagonist.


Journal of Pharmacology and Experimental Therapeutics | 2008

Antidepressants Targeting the Serotonin Reuptake Transporter Act via a Competitive Mechanism

Subbu Apparsundaram; Daniel J. Stockdale; Robert Henningsen; Marcos E. Milla; Renee Sharon Martin

Although several antidepressants (including fluoxetine, imipramine, citalopram, venlafaxine, and duloxetine) are known to inhibit the serotonin transporter (SERT), whether or not these molecules compete with 5-hydroxytryptamine (serotonin) (5-HT) for binding to SERT has remained controversial. We have performed radioligand competition binding experiments and found that all data can be fitted via a simple competitive interaction model, using Cheng-Prusoff analysis (Biochem Pharmacol 22:3099–3108, 1973). Two different SERT-selective radioligands, [3H]N,N-dimethyl-2-(2-amino-4-cyanophenyl thio)-benzylamine (DASB) and [3H]S-citalopram, were used to probe competitive binding to recombinantly expressed human SERT or native SERT in rat cortical membranes. All the SERT inhibitors that we tested were able to inhibit [3H]DASB and [3H]S-citalopram binding in a concentration-dependent manner, with unity Hill coefficient. In accordance with the Cheng-Prusoff relationship for a competitive interaction, we observed that test compound concentrations associated with 50% maximal inhibition of radiotracer binding (IC50) increased linearly with increasing radioligand concentration for all ligands: 5-HT, S-citalopram, R-citalopram, paroxetine, clomipramine, fluvoxamine, imipramine venlafaxine, duloxetine, indatraline, cocaine, and 2-β-carboxy-3-β-(4-iodophenyl)tropane. The equilibrium dissociation constant of 5-HT and SERT inhibitors were also derived using Scatchard analysis of the data set, and they were found to be comparable with the data obtained using the Cheng-Prusoff relationship. Our studies establish a reference framework that will contribute to ongoing efforts to understand ligand binding modes at SERT by demonstrating that 5-HT and the SERT inhibitors tested bind to the serotonin transporter in a competitive manner.


Journal of Biological Chemistry | 2016

Engineering Highly Potent and Selective Microproteins against Nav1.7 Sodium Channel for Treatment of Pain.

Anatoly Shcherbatko; Andrea Rossi; Davide Foletti; Guoyun Zhu; Oren Bogin; Meritxell Galindo Casas; Mathias Rickert; Adela Hasa-Moreno; Victor V. Bartsevich; Andreas Crameri; Alexander Steiner; Robert Henningsen; Avinash Gill; Jaume Pons; David L. Shelton; Arvind Rajpal; Pavel Strop

The prominent role of voltage-gated sodium channel 1.7 (Nav1.7) in nociception was revealed by remarkable human clinical and genetic evidence. Development of potent and subtype-selective inhibitors of this ion channel is crucial for obtaining therapeutically useful analgesic compounds. Microproteins isolated from animal venoms have been identified as promising therapeutic leads for ion channels, because they naturally evolved to be potent ion channel blockers. Here, we report the engineering of highly potent and selective inhibitors of the Nav1.7 channel based on tarantula ceratotoxin-1 (CcoTx1). We utilized a combination of directed evolution, saturation mutagenesis, chemical modification, and rational drug design to obtain higher potency and selectivity to the Nav1.7 channel. The resulting microproteins are highly potent (IC50 to Nav1.7 of 2.5 nm) and selective. We achieved 80- and 20-fold selectivity over the closely related Nav1.2 and Nav1.6 channels, respectively, and the IC50 on skeletal (Nav1.4) and cardiac (Nav1.5) sodium channels is above 3000 nm. The lead molecules have the potential for future clinical development as novel therapeutics in the treatment of pain.


FEBS Letters | 1998

Expression and characterization of a dopamine D4R variant associated with delusional disorder

Marie-Theèreése Zenner; Maria Nobile; Robert Henningsen; Enrico Smeraldi; Olivier Civelli; Deborah S. Hartman; Marco Catalano

Multiple genetic polymorphisms of the human dopamine D4 receptor (hD4R) have been identified including a 12 bp repeat in exon 1 associated with a psychotic condition called delusional disorder. Competition binding assays revealed minor pharmacological differences between the recombinant A1 (normal) and A2 (delusional) proteins with respect to quinpirole and the antipsychotic clozapine, however no functional differences were detected for receptor activation by dopamine, epinephrine, or norepinephrine. Our results suggest that this polymorphism may only confer susceptibility to delusional disorder in combination with other genetic or environmental factors.


Bioorganic & Medicinal Chemistry Letters | 2014

Scaffold hopping towards potent and selective JAK3 inhibitors: discovery of novel C-5 substituted pyrrolopyrazines.

Javier de Vicente; Remy Lemoine; Mark Bartlett; Johannes C. Hermann; Mohammad Hekmat-Nejad; Robert Henningsen; Sue Jin; Andreas Kuglstatter; Hongju Li; Allen John Lovey; John Menke; Linghao Niu; Vaishali Patel; Ann C. Petersen; Lina Setti; Ada Shao; Parcharee Tivitmahaisoon; Minh Diem Vu; Michael Soth

The discovery of a novel series of pyrrolopyrazines as JAK inhibitors with comparable enzyme and cellular activity to tofacitinib is described. The series was identified using a scaffold hopping approach aided by structure based drug design using principles of intramolecular hydrogen bonding for conformational restriction and targeting specific pockets for modulating kinase activity.


Proceedings of the National Academy of Sciences of the United States of America | 1996

Primary structure and tissue distribution of the orphanin FQ precursor

Hans Peter Nothacker; Rainer K. Reinscheid; Alfred Mansour; Robert Henningsen; Ali Ardati; Frederick J. Monsma; Stanley J. Watson; Olivier Civelli


Molecular Pharmacology | 1997

Interaction of [3H]orphanin FQ and 125I-Tyr14-orphanin FQ with the orphanin FQ receptor: kinetics and modulation by cations and guanine nucleotides.

Ali Ardati; Robert Henningsen; Jacqueline Higelin; Rainer K. Reinscheid; Olivier Civelli; Frederick J. Monsma

Collaboration


Dive into the Robert Henningsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcos E. Milla

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge