Robert Hooper
Temple University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert Hooper.
Journal of Cell Biology | 2009
Eugen Brailoiu; Dev Churamani; Xinjiang Cai; Michael G. Schrlau; G. Cristina Brailoiu; Xin Gao; Robert Hooper; Michael J. Boulware; Nae J. Dun; Jonathan S. Marchant; Sandip Patel
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a widespread and potent calcium-mobilizing messenger that is highly unusual in activating calcium channels located on acidic stores. However, the molecular identity of the target protein is unclear. In this study, we show that the previously uncharacterized human two-pore channels (TPC1 and TPC2) are endolysosomal proteins, that NAADP-mediated calcium signals are enhanced by overexpression of TPC1 and attenuated after knockdown of TPC1, and that mutation of a single highly conserved residue within a putative pore region abrogated calcium release by NAADP. Thus, TPC1 is critical for NAADP action and is likely the long sought after target channel for NAADP.
Journal of Biological Chemistry | 2010
Eugen Brailoiu; Taufiq Rahman; Dev Churamani; David L. Prole; G. Cristina Brailoiu; Robert Hooper; Colin W. Taylor; Sandip Patel
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a ubiquitous messenger proposed to stimulate Ca2+ release from acidic organelles via two-pore channels (TPCs). It has been difficult to resolve this trigger event from its amplification via endoplasmic reticulum Ca2+ stores, fuelling speculation that archetypal intracellular Ca2+ channels are the primary targets of NAADP. Here, we redirect TPC2 from lysosomes to the plasma membrane and show that NAADP evokes Ca2+ influx independent of ryanodine receptors and that it activates a Ca2+-permeable channel whose conductance is reduced by mutation of a residue within a putative pore. We therefore uncouple TPC2 from amplification pathways and prove that it is a pore-forming subunit of an NAADP-gated Ca2+ channel.
Journal of Biological Chemistry | 2012
Yaping Lin-Moshier; Timothy F. Walseth; Dev Churamani; Sean M. Davidson; James T. Slama; Robert Hooper; Eugene Brailoiu; Sandip Patel; Jonathan S. Marchant
Background: Nicotinic acid adenine dinucleotide phosphate (NAADP) activates two-pore channels (TPCs) to release Ca2+ from intracellular acidic Ca2+ stores. Results: A photoactivatable probe based on NAADP labels proteins distinct from TPCs. Conclusion: NAADP may bind to an accessory protein within a larger TPC complex. Significance: First evidence that TPCs act as NAADP-activated Ca2+ release channels, but not NAADP receptors. Nicotinic acid adenine dinucleotide phosphate (NAADP) is an agonist-generated second messenger that releases Ca2+ from intracellular acidic Ca2+ stores. Recent evidence has identified the two-pore channels (TPCs) within the endolysosomal system as NAADP-regulated Ca2+ channels that release organellar Ca2+ in response to NAADP. However, little is known about the mechanism coupling NAADP binding to calcium release. To identify the NAADP binding site, we employed a photoaffinity labeling method using a radioactive photoprobe based on 5-azido-NAADP ([32P-5N3]NAADP) that exhibits high affinity binding to NAADP receptors. In several systems that are widely used for studying NAADP-evoked Ca2+ signaling, including sea urchin eggs, human cell lines (HEK293, SKBR3), and mouse pancreas, 5N3-NAADP selectively labeled low molecular weight sites that exhibited the diagnostic pharmacology of NAADP-sensitive Ca2+ release. Surprisingly, we were unable to demonstrate labeling of endogenous, or overexpressed, TPCs. Furthermore, labeling of high affinity NAADP binding sites was preserved in pancreatic samples from TPC1 and TPC2 knock-out mice. These photolabeling data suggest that an accessory component within a larger TPC complex is responsible for binding NAADP that is unique from the core channel itself. This observation necessitates critical evaluation of current models of NAADP-triggered activation of the TPC family.
Journal of Biological Chemistry | 2010
Eugen Brailoiu; Robert Hooper; Xinjiang Cai; G. Cristina Brailoiu; Michael V. Keebler; Nae J. Dun; Jonathan S. Marchant; Sandip Patel
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent and widespread calcium-mobilizing messenger, the properties of which have been most extensively described in sea urchin eggs. The molecular basis for calcium release by NAADP, however, is not clear and subject to controversy. Recent studies have provided evidence that members of the two-pore channel (TPC) family in mammals are the long sought after target channels for NAADP. Here, we show that the TPC3 gene, which has yet to be functionally characterized, is present throughout the deuterostome lineage but is a pseudogene in humans and other primates. We report the molecular cloning of the complete ancestral TPC gene family from the sea urchin and demonstrate that all three isoforms localize to acidic organelles to mediate NAADP-dependent calcium release. Our data highlight the functional divergence of this novel gene family during deuterostome evolution and provide further evidence that NAADP mediates calcium release from acidic stores through activation of TPCs.
Journal of Biological Chemistry | 2011
Robert Hooper; Dev Churamani; Eugen Brailoiu; Colin W. Taylor; Sandip Patel
Two-pore channels (TPCs) localize to the endolysosomal system and have recently emerged as targets for the Ca2+-mobilizing messenger, nicotinic acid adenine dinucleotide phosphate (NAADP). However, their membrane topology is unknown. Using fluorescence protease protection assays, we show that human TPC1 and TPC2 possess cytosolic N and C termini and therefore an even number of transmembrane regions. Fluorophores placed at position 225 or 347 in TPC1, or 339 in TPC2 were also cytosolic, whereas a fluorophore at position 628 in TPC1 was luminal. These data together with sequence similarity to voltage-gated Ca2+ and Na+ channels, and unbiased in silico predictions are consistent with a topology in which two homologous domains are present, each comprising 6 transmembrane regions and a re-entrant pore loop. Immunocytochemical analysis of selectively permeabilized cells using antipeptide antibodies confirmed that the C-terminal tails of recombinant TPCs are cytosolic and that residues 240–254 of TPC2 prior to putative pore 1 are luminal. Both TPC1 and TPC2 are N-glycosylated with residues 599, 611, and 616 contributing to glycosylation of TPC1. This confirms the luminal position of these residues, which immediately precede the putative pore loop of the second domain. Mutation of all three glycosylation sites in TPC1 enhances NAADP-evoked cytosolic Ca2+ signals. Our data establish essential features of the topology of two-pore channels.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Yaping Lin-Moshier; Michael V. Keebler; Robert Hooper; Michael J. Boulware; Xiaolong Liu; Dev Churamani; Mary E. Abood; Timothy F. Walseth; Eugen Brailoiu; Sandip Patel; Jonathan S. Marchant
Significance Two-pore channels (TPCs) are a recently discovered family of endolysosomal ion channels, but their regulation is controversial. By defining the TPC interactome, we provide a community resource that illuminates TPC complex regulation and resolves associations with novel partners and processes. Physical interactions with endolysosomal trafficking regulators predominate, and Rab GTPases impart isoform-specific roles for TPCs in organelle proliferation and cellular pigmentation. These data imply a fundamental role for TPCs in trafficking that augurs significance for disease states exhibiting lysosomal proliferation where TPC dysregulation may drive pathogenesis. The two-pore channels (TPC1 and TPC2) belong to an ancient family of intracellular ion channels expressed in the endolysosomal system. Little is known about how regulatory inputs converge to modulate TPC activity, and proposed activation mechanisms are controversial. Here, we compiled a proteomic characterization of the human TPC interactome, which revealed that TPCs complex with many proteins involved in Ca2+ homeostasis, trafficking, and membrane organization. Among these interactors, TPCs were resolved to scaffold Rab GTPases and regulate endomembrane dynamics in an isoform-specific manner. TPC2, but not TPC1, caused a proliferation of endolysosomal structures, dysregulating intracellular trafficking, and cellular pigmentation. These outcomes required both TPC2 and Rab activity, as well as their interactivity, because TPC2 mutants that were inactive, or rerouted away from their endogenous expression locale, or deficient in Rab binding, failed to replicate these outcomes. Nicotinic acid adenine dinucleotide phosphate (NAADP)-evoked Ca2+ release was also impaired using either a Rab binding-defective TPC2 mutant or a Rab inhibitor. These data suggest a fundamental role for the ancient TPC complex in trafficking that holds relevance for lysosomal proliferative scenarios observed in disease.
Biochemical Journal | 2013
Dev Churamani; Robert Hooper; Taufiq Rahman; Eugen Brailoiu; Sandip Patel
TPCs (two-pore channels) are NAADP (nicotinic acid-adenine dinucleotide phosphate)-sensitive Ca2+-permeable ion channels expressed on acidic organelles. In the present study we show that deletion of the N-terminal region redirects TPC1 to the ER (endoplasmic reticulum). The introduction of fluorophores at the N-terminus of TPC1 does not affect its subcellular location, but does reversibly abolish NAADP sensitivity. Our results reveal a dual role for the N-terminus in localization and function of TPC1.
Advances in Experimental Medicine and Biology | 2012
Robert Hooper; Sandip Patel
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent intracellular Ca(2+)-mobilising messenger. Much evidence indicates that NAADP targets novel Ca(2+) channels located on acidic organelles but the identity of these channels has remained obscure. Recent studies have converged on a novel class of ion channels, the two-pore channels (TPCs) as likely molecular targets. The location of these channels to the endo-lysosomal system and their sensitivity to NAADP match closely those of endogenous NAADP-sensitive channels in both mammalian cells and sea urchin eggs, where the effects of NAADP were discovered. Moreover, the functional coupling of TPCs to archetypal endoplasmic reticulum (ER) Ca(2+) channels is also matched. Biophysical analysis in conjunction with site-directed mutagenesis demonstrates that TPCs are pore-forming subunits of NAADP-gated ion channels. TPCs have a unique two-repeat structure, are regulated by N-linked glycosylation and harbor an endo-lysosomal targeting motif in their N-terminus. Knockdown studies have shown TPCs to regulate smooth muscle contraction, differentiation and endothelial cell activation consistent with previous studies implicating NAADP in these processes. Thus multiple lines of evidence indicate that TPCs are the likely long sought targets for NAADP.
Biochemical Journal | 2012
Dev Churamani; Robert Hooper; Eugen Brailoiu; Sandip Patel
TPCs (two-pore channels) have recently been identified as targets for the Ca2+-mobilizing messenger NAADP (nicotinic acid–adenine dinucleotide phosphate). TPCs have a unique structure consisting of cytosolic termini, two hydrophobic domains (I and II) each comprising six transmembrane regions and a pore, and a connecting cytosolic loop; however, little is known concerning how these channels are assembled. In the present paper, we report that both domain I and II of human TPCs are capable of independent insertion into membranes, whereas the loop linking the domains fails to insert. Pairs of transmembrane regions within domain I of TPC1 are also capable of insertion, consistent with sequential translational integration of hydrophobic regions. Insertion of the first two transmembrane regions, however, was inefficient, indicating possible interaction between transmembrane regions during translation. Both domains, and each pair of transmembrane regions within domain I, were capable of forming oligomers, highlighting marked redundancy in the molecular determinants driving oligomer formation. Each hydrophobic domain formed dimers upon cross-linking. The first four transmembrane regions of TPC1 also formed dimers, whereas transmembrane regions 5 and 6, encompassing the pore loop, formed both dimers and tetramers. TPCs thus probably assemble as dimers through differential interactions between transmembrane regions. The present study provides new molecular insight into the membrane insertion and oligomerization of TPCs.
Pflügers Archiv: European Journal of Physiology | 2013
Robert Hooper; Elsie Samakai; Joseph Kedra; Jonathan Soboloff
Stromal interaction molecules (STIM1 and STIM2) are critical components of store-operated calcium entry. Sensing depletion of endoplasmic reticulum (ER) Ca2+ stores, STIM couples with plasma membrane Orai channels, resulting in the influx of Ca2+ across the PM into the cytosol. Although best recognized for their primary role as ER Ca2+ sensors, increasing evidence suggests that STIM proteins have a broader variety of sensory capabilities than first envisaged, reacting to cell stressors such as oxidative stress, temperature, and hypoxia. Further, the array of partners for STIM proteins is now understood to range far beyond the Orai channel family. Here we discuss the implications of STIM’s expanding role, both as a stress sensor and a general modulator of multiple physiological processes in the cell.