Robert Horowits
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert Horowits.
Biophysical Journal | 1992
Robert Horowits
When relaxed striated muscle cells are stretched, a resting tension is produced which is thought to arise from stretching long, elastic filaments composed of titin (also called connectin). Here, I show that single skinned rabbit soleus muscle fibers produce resting tension that is several-fold lower than that found in rabbit psoas fibers. At sarcomere lengths where the slope of the resting tension-sarcomere length relation is low, electron microscopy of skinned fibers indicates that thick filaments move from the center to the side of the sarcomere during prolonged activation. As sarcomeres are stretched and the resting tension sarcomere length relation becomes steeper, this movement is decreased. The sarcomere length range over which thick filament movement decreases is higher in soleus than in psoas fibers, paralleling the different lengths at which the slope of the resting tension-sarcomere length relations increase. These results indicate that the large differences in resting tension between single psoas and soleus fibers are due to different tensions exerted by the elastic elements linking the end of each thick filament to the nearest Z-disc, i.e., the titin filaments. Quantitative gel electrophoresis of proteins from single muscle fibers excludes the possibility that resting tension is less in soleus than in psoas fibers simply because they have fewer titin filaments. A small difference in the electrophoretic mobility of titin between psoas and soleus fibers suggests the alternate possibility that mammalian muscle cells use at least two titin isoforms with differing elastic properties to produce variations in resting tension.
Cytoskeleton | 1997
Gang Luo; Jian Q. Zhang; Tuyet-Phuong Nguyen; Amy H. Herrera; Bruce M. Paterson; Robert Horowits
We have cloned and sequenced the full-length cDNA of N-RAP, a novel nebulin-related protein, from mouse skeletal muscle. The N-RAP message is specifically expressed in skeletal and cardiac muscle, but is not detected by Northern blot in non-muscle tissues. The full-length N-RAP cDNA contains an open reading frame of 3,525 base pairs which is predicted to encode a protein of 133 kDa. A 587 amino acid region near the C-terminus is 45% identical to the actin binding region of human nebulin, containing more than 2 complete 245 residue nebulin super repeats. The N-terminus contains the consensus sequence of a cysteine-rich LIM domain, which may function in mediating protein-protein interactions. These data suggest that the encoded protein may link actin filaments to some other proteins or structure. We expressed full-length N-RAP in Escherichia coli, as well as the nebulin-like super repeat region of N-RAP (N-RAP-SR) and the region between the LIM domain and N-RAP-SR (N-RAP-IB). An anti-N-RAP antibody raised against a 30 amino acid peptide corresponding to sequence from N-RAP-IB detected recombinant N-RAP and N-RAP-IB, but failed to detect N-RAP-SR. This antibody specifically identified a 185 kDa band as N-RAP on immunoblots of mouse skeletal and cardiac muscle proteins. In an assay of actin binding to electrophoresed and blotted proteins, we detected significant actin binding to expressed nebulin super repeats and N-RAP-SR, but only a trace amount of binding to N-RAP-IB. In immunofluorescence experiments, N-RAP was found to be localized at the myotendinous junction in mouse skeletal muscle and at the intercalated disc in cardiac muscle. Based on its domain organization, actin binding properties, and tissue localization, we propose that N-RAP plays a role in anchoring the terminal actin filaments in the myofibril to the membrane and may be important in transmitting tension from the myofibrils to the extracellular matrix.
Journal of Cell Science | 2003
Shajia Lu; Stefanie Carroll; Amy H. Herrera; Bradford W. Ozanne; Robert Horowits
N-RAP, a muscle-specific protein concentrated at myotendinous junctions in skeletal muscle and intercalated disks in cardiac muscle, has been implicated in myofibril assembly. To discover more about the role of N-RAP in myofibril assembly, we used the yeast two-hybrid system to screen a mouse skeletal muscle cDNA library for proteins capable of binding N-RAP in a eukaryotic cell. From yeast two-hybrid experiments we were able to identify three new N-RAP binding partners: α-actinin, filamin-2, and Krp1 (also called sarcosin). In vitro binding assays were used to verify these interactions and to identify the N-RAP domains involved. Three regions of N-RAP were expressed as His-tagged recombinant proteins, including the nebulin-like super repeat region (N-RAP-SR), the N-terminal LIM domain (N-RAP-LIM), and the region of N-RAP in between the super repeat region and the LIM domain (N-RAP-IB). We detected significant α-actinin binding to N-RAP-IB and N-RAP-LIM, filamin binding to N-RAP-SR, and Krp1 binding to N-RAP-SR and N-RAP-IB. During myofibril assembly in cultured chick cardiomyocytes, N-RAP and filamin appear to co-localize with α-actinin in the earliest myofibril precursors found near the cell periphery, as well as in the nascent myofibrils that form as these structures fuse laterally. In contrast, Krp1 is not localized until late in the assembly process, when it appears at the periphery of myofibrils that appear to be fusing laterally. The results suggest that sequential recruitment of N-RAP binding partners may serve an important role during myofibril assembly.
Biophysical Reviews | 2011
Garland L. Crawford; Robert Horowits
Sarcomere assembly in striated muscles has long been described as a series of steps leading to assembly of individual proteins into thick filaments, thin filaments and Z-lines. Decades of previous work focused on the order in which various structural proteins adopted the striated organization typical of mature myofibrils. These studies led to the view that actin and α-actinin assemble into premyofibril structures separately from myosin filaments, and that these structures are then assembled into myofibrils with centered myosin filaments and actin filaments anchored at the Z-lines. More recent studies have shown that particular scaffolding proteins and chaperone proteins are required for individual steps in assembly. Here, we review the evidence that N-RAP, a LIM domain and nebulin repeat protein, scaffolds assembly of actin and α-actinin into I-Z-I structures in the first steps of assembly; that the heat shock chaperone proteins Hsp90 & Hsc70 cooperate with UNC-45 to direct the folding of muscle myosin and its assembly into thick filaments; and that the kelch repeat protein Krp1 promotes lateral fusion of premyofibril structures to form mature striated myofibrils. The evidence shows that myofibril assembly is a complex process that requires the action of particular catalysts and scaffolds at individual steps. The scaffolds and chaperones required for assembly are potential regulators of myofibrillogenesis, and abnormal function of these proteins caused by mutation or pathological processes could in principle contribute to diseases of cardiac and skeletal muscles.
Journal of Cell Science | 2004
Stefanie Carroll; Shajia Lu; Amy H. Herrera; Robert Horowits
N-RAP is a muscle-specific protein with an N-terminal LIM domain (LIM), C-terminal actin-binding super repeats homologous to nebulin (SR) and nebulin-related simple repeats (IB) in between the two. Based on biochemical data, immunofluorescence analysis of cultured embryonic chick cardiomyocytes and the targeting and phenotypic effects of these individual GFP-tagged regions of N-RAP, we proposed a novel model for the initiation of myofibril assembly in which N-RAP organizes α-actinin and actin into the premyofibril I-Z-I complexes. We tested the proposed model by expressing deletion mutants of N-RAP (i.e. constructs containing two of the three regions of N-RAP) in chick cardiomyocytes and observing the effects on α-actinin and actin organization into mature sarcomeres. Although individually expressing either the LIM, IB, or SR regions of N-RAP inhibited α-actinin assembly into Z-lines, expression of either the LIM-IB fusion or the IB-SR fusion permitted normal α-actinin organization. In contrast, the LIM-SR fusion (LIM-SR) inhibited α-actinin organization into Z-lines, indicating that the IB region is critical for Z-line assembly. While permitting normal Z-line assembly, LIM-IB and IB-SR decreased sarcomeric actin staining intensity; however, the effects of LIM-IB on actin assembly were significantly more severe, as estimated both by morphological assessment and by quantitative measurement of actin staining intensity. In addition, LIM-IB was consistently retained in mature Z-lines, while mature Z-lines without significant IB-SR incorporation were often observed. We conclude that the N-RAP super repeats are essential for organizing actin filaments during myofibril assembly in cultured embryonic chick cardiomyocytes, and that they also play an important role in removal of the N-RAP scaffold from the completed myofibrillar structure. This work strongly supports the N-RAP scaffolding model of premyofibril assembly.
Cytoskeleton | 2000
Stefanie Carroll; Robert Horowits
The expression of N-RAP was investigated in immuofluorescently stained embryonic chick cardiomyocyte cultures. After 1 day in culture, the cardiomyocytes were spherical and N-RAP, titin, alpha-actinin, and vinculin were all diffusely distributed. As the cardiomyocytes spread and formed myofibrils and cell contacts, N-RAP became localized to distinct areas in the cells. During myofibrillogenesis, N-RAP was found concentrated in premyofibrils. As the premyofibrils transformed into bundles of mature myofibrils, N-RAP became concentrated at the longitundal ends of the cells, and was not found in the mature sarcomeres. At sites of cell-cell contacts, N-RAP was localized to the cell junction even in cells without any significant myofibril formation. As the cell-cell contacts became more extensive and formed structures resembling the intercalated disks found in hearts, N-RAP became even more specifically concentrated at these junctions. The results show that myofibrillogenesis and cell contact formation can each independently target N-RAP to the longitudinal ends of cardiomyocytes.
Experimental Cell Research | 2008
Cynthia C. Greenberg; Patricia S. Connelly; Mathew P. Daniels; Robert Horowits
Krp1, also called sarcosin, is a cardiac and skeletal muscle kelch repeat protein hypothesized to promote the assembly of myofibrils, the contractile organelles of striated muscles, through interaction with N-RAP and actin. To elucidate its role, endogenous Krp1 was studied in primary embryonic mouse cardiomyocytes. While immunofluorescence showed punctate Krp1 distribution throughout the cell, detergent extraction revealed a significant pool of Krp1 associated with cytoskeletal elements. Reduction of Krp1 expression with siRNA resulted in specific inhibition of myofibril accumulation with no effect on cell spreading. Immunostaining analysis and electron microscopy revealed that cardiomyocytes lacking Krp1 contained sarcomeric proteins with longitudinal periodicities similar to mature myofibrils, but fibrils remained thin and separated. These thin myofibrils were degraded by a scission mechanism distinct from the myofibril disassembly pathway observed during cell division in the developing heart. The data are consistent with a model in which Krp1 promotes lateral fusion of adjacent thin fibrils into mature, wide myofibrils and contribute insight into mechanisms of myofibrillogenesis and disassembly.
Cytoskeleton | 2000
Amy H. Herrera; Brian Elzey; Douglas J. Law; Robert Horowits
The regions of mouse nebulin extending from the ends of the super repeats to the C-terminus and N-terminus were cloned and sequenced. Comparison of the mouse sequence with the previously published human sequence shows that the terminal regions of nebulin are highly conserved. The four phosphorylation motifs and SH3 domain found at the C-terminus of mouse nebulin are identical to those found in human nebulin, with the exception of four conservative substitutions. The modules linking this C-terminal region to the super repeats have deletions relative to both fetal and adult human nebulins that correspond to integral numbers of modules, making the mouse C-terminal simple repeat region among the shortest observed to date. The N-terminal region and the C-terminal modules were expressed in Escherichia coli and used for antibody production. Immunofluorescent labeling of these regions of nebulin in isolated myofibrils demonstrates that they are located near the center of the sarcomere and near the Z-line, respectively. Immunogold labeling with antibodies raised against the N-terminal nebulin sequence localizes this region in the A-band near the tips of the thin filaments. Nebulin localization is complementary to that of N-RAP, another muscle-specific protein containing nebulin-like super repeats; nebulin is exclusively found in the sarcomeres, while N-RAP is confined to the terminal bundles of actin filaments at the myotendinous junction. Cell Motil. Cytoskeleton 3:211-222, 2000 Published 2000 Wiley-Liss, Inc.
Experimental Cell Research | 2009
Shyam M. Manisastry; Kristien Zaal; Robert Horowits
N-RAP is a striated muscle-specific scaffolding protein that organizes alpha-actinin and actin into symmetrical I-Z-I structures in developing myofibrils. Here we determined the order of events during myofibril assembly through time-lapse confocal microscopy of cultured embryonic chick cardiomyocytes coexpressing fluorescently tagged N-RAP and either alpha-actinin or actin. During de novo myofibril assembly, N-RAP assembled in fibrillar structures within the cell, with dots of alpha-actinin subsequently organizing along these structures. The initial fibrillar structures were reminiscent of actin fibrils, and coassembly of N-RAP and actin into newly formed fibrils supported this. The alpha-actinin dots subsequently broadened to Z-lines that were wider than the underlying N-RAP fibril, and N-RAP fluorescence intensity decreased. FRAP experiments showed that most of the alpha-actinin dynamically exchanged during all stages of myofibril assembly. In contrast, less than 20% of the N-RAP in premyofibrils was exchanged during 10-20 min after photobleaching, but this value increased to 70% during myofibril maturation. The results show that N-RAP assembles into an actin containing scaffold before alpha-actinin recruitment; that the N-RAP scaffold is much more stable than the assembling structural components; that N-RAP dynamics increase as assembly progresses; and that N-RAP leaves the structure after assembly is complete.
Biophysical Journal | 1998
Jian Q. Zhang; Andrea S. Weisberg; Robert Horowits
cDNA clones encoding mouse skeletal muscle nebulin were expressed in Escherichia coli as thioredoxin fusion proteins and purified in the presence of 6 M urea. These fragments, called 7a and 8c, contain 28 and 19 of the weakly repeating approximately 35-residue nebulin modules, respectively. The nebulin fragments are soluble at extremely high pH, but aggregate when dialyzed to neutral pH, as assayed by centrifugation at 16,000 x g. However, when mixed with varying amounts of G-actin at pH 12 and then dialyzed to neutral pH, the nebulin fragments are solubilized in a concentration-dependent manner, remaining in the supernatant along with the monomeric actin. These results show that interaction with G-actin allows the separation of insoluble nebulin aggregates from soluble actin-nebulin complexes by centrifugation. We used this property to assay the incorporation of nebulin fragments into preformed actin filaments. Varying amounts of aggregated nebulin were mixed with a constant amount of F-actin at pH 7.0. The nebulin aggregates were pelleted by centrifugation at 5200 x g, whereas the actin filaments, including incorporated nebulin fragments, remained in the supernatant. Using this assay, we found that nebulin fragments 7a and 8c bound to actin filaments with high affinity. Immunofluorescence and electron microscopy of the actin-nebulin complexes verified that the nebulin fragments were reorganized from punctate aggregates to a filamentous form upon interaction with F-actin. In addition, we found that fragment 7a binds to F-actin with a stoichiometry of one nebulin module per actin monomer, the same stoichiometry we found in vivo. In contrast, 8c binds to F-actin with a stoichiometry of one module per two actin monomers. These data indicate that 7a can be incorporated into actin filaments to the same extent found in vivo, and suggest that shorter fragments may not bind actin filaments in the same way as the native nebulin molecule.