Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert J. Forster is active.

Publication


Featured researches published by Robert J. Forster.


BMC Microbiology | 2001

Phylogenetic analysis of methanogens from the bovine rumen

Marc F Whitford; Ronald M. Teather; Robert J. Forster

BackgroundInterest in methanogens from ruminants has resulted from the role of methane in global warming and from the fact that cattle typically lose 6 % of ingested energy as methane. Several species of methanogens have been isolated from ruminants. However they are difficult to culture, few have been consistently found in high numbers, and it is likely that major species of rumen methanogens are yet to be identified.ResultsTotal DNA from clarified bovine rumen fluid was amplified using primers specific for Archaeal 16S rRNA gene sequences (rDNA). Phylogenetic analysis of 41 rDNA sequences identified three clusters of methanogens. The largest cluster contained two distinct subclusters with rDNA sequences similar to Methanobrevibacter ruminantium 16S rDNA. A second cluster contained sequences related to 16S rDNA from Methanosphaera stadtmanae, an organism not previously described in the rumen. The third cluster contained rDNA sequences that may form a novel group of rumen methanogens.ConclusionsThe current set of 16S rRNA hybridization probes targeting methanogenic Archaea does not cover the phylogenetic diversity present in the rumen and possibly other gastro-intestinal tract environments. New probes and quantitative PCR assays are needed to determine the distribution of the newly identified methanogen clusters in rumen microbial communities.


FEMS Microbiology Ecology | 2002

Molecular analysis of bacterial populations in the ileum of broiler chickens and comparison with bacteria in the cecum

Jianhua Gong; Robert J. Forster; Hai Yu; James R. Chambers; Roger Wheatcroft; Parviz M. Sabour; Shu Chen

Bacterial populations in the ileum of broiler chickens were analyzed by molecular analysis of 16S rRNA genes and compared to those in the cecum. Bacteria found in the ileal mucosa were mainly Gram-positive with low G+C content. There were 15 molecular species among 51 cloned sequences. More than 70% of the cloned sequences were related to lactobacilli and Enterococcus cecorum. Two sequences had 95% or less homology to existing database sequences. Terminal restriction fragment length polymorphism (T-RFLP) analysis revealed differences among bacterial populations present in the mucosa and lumen of the ileum. Comparative studies by T-RFLP and sequence analyses of 16S rRNA genes indicated a less diverse bacterial population in the ileum (mucosa and lumen) than in the cecum. Lactobacilli, E. cecorum, and butyrate-producing bacteria related (including both identified and unidentified species) sequences were the three major groups detected in ilea and ceca. Although butyrate-producing bacteria may have good potential in the development of novel probiotics for poultry, verifying the presence of the bacteria in the chicken gut is required to warrant further investigation.


FEMS Microbiology Ecology | 2010

Composition, spatial distribution, and diversity of the bacterial communities in the rumen of cows fed different forages

Yunhong Kong; Ronald M. Teather; Robert J. Forster

The species composition, distribution, and biodiversity of the bacterial communities in the rumen of cows fed alfalfa or triticale were investigated using 16S rRNA gene clone library analyses. The rumen bacterial community was fractionated and analyzed as three separate fractions: populations in the planktonic, loosely attached to rumen digesta particles, and tightly attached to rumen digesta particles. Six hundred and thirteen operational taxonomic units (OTUs) belonging to 32 genera, 19 families, and nine phyla of the domain Bacteria were identified from 1014 sequenced clones. Four hundred and fifty one of the 613 OTUs were identified as new species. These bacterial sequences were distributed differently among the three fractions in the rumen digesta of cows fed alfalfa or triticale. Chao 1 estimation revealed that, in both communities, the populations tightly attached to particulates were more diverse than the planktonic and those loosely attached to particulates. S-Libshuff detected significant differences in the composition between any two fractions in the rumen of cows with the same diet and between the communities fed alfalfa and triticale diets. The species richness estimated for the communities fed alfalfa and triticale is 1027 and 662, respectively. The diversity of the rumen bacterial community examined in this study is greater than previous studies have demonstrated and the differences in the community composition between two high-fiber diets have implications for sample selection for downstream metagenomics applications.


PLOS ONE | 2013

Characterization of the Core Rumen Microbiome in Cattle during Transition from Forage to Concentrate as Well as during and after an Acidotic Challenge

Renee M. Petri; Tyler Schwaiger; Greg Penner; Karen A. Beauchemin; Robert J. Forster; J. J. McKinnon; Tim A. McAllister

This study investigated the effect of diet and host on the rumen bacterial microbiome and the impact of an acidotic challenge on its composition. Using parallel pyrosequencing of the V3 hypervariable region of 16S rRNA gene, solid and liquid associated bacterial communities of 8 heifers were profiled. Heifers were exclusively fed forage, before being transitioned to a concentrate diet, subjected to an acidotic challenge and allowed to recover. Samples of rumen digesta were collected when heifers were fed forage, mixed forage, high grain, during challenge (4 h and 12 h) and recovery. A total of 560,994 high-quality bacterial sequences were obtained from the solid and liquid digesta. Using cluster analysis, prominent bacterial populations differed (P≤0.10) in solid and liquid fractions between forage and grain diets. Differences among hosts and diets were not revealed by DGGE, but real time qPCR showed that several bacteria taxon were impacted by changes in diet, with the exception of Streptococcus bovis. Analysis of the core rumen microbiome identified 32 OTUs representing 10 distinct bacterial taxa including Bacteroidetes (32.8%), Firmicutes (43.2%) and Proteobacteria (14.3%). Diversity of OTUs was highest with forage with 38 unique OTUs identified as compared to only 11 with the high grain diet. Comparison of the microbial profiles of clincial vs. subclinical acidotic heifers found a increases in the relative abundances of Acetitomaculum, Lactobacillus, Prevotella, and Streptococcus. Increases in Streptococcus and Lactobacillus likely reflect the tolerance of these species to low pH and their ability to proliferate on surplus fermentable carbohydrate. The acetogen, Acetitomaculum may thereforeplay a role in the conversion of lactate to acetate in acidotic animals. Further profiling of the bacterial populations associated with subclinical and clinical acidosis could establish a microbial fingerprint for these disorders and provide insight into whether there are causative microbial populations that could potentially be therapeutically manipulated.


Environmental Microbiology | 2008

Culture-independent approach of the bacterial bioaerosol diversity in the standard swine confinement buildings, and assessment of the seasonal effect

Benjamin Nehmé; Valérie Létourneau; Robert J. Forster; Marc Veillette; Caroline Duchaine

The bacterial bioaerosol community of eight swine confinement buildings (SCB) was monitored during two visits in the winter, and one during the summer. To our knowledge, culture-independent approaches and molecular biology tools such as biomass quantification and biodiversity analyses have never been applied to swine building bioaerosol analyses. Total DNA of each sample was extracted and analysed by quantitative real-time polymerase chain reaction, denaturing gradient gel electrophoresis (DGGE) and phylogenetic analysis using primers targeting the bacterial 16S rRNA gene. Even though the total bacterial concentration was higher in winter than in summer, the total bacterial concentration for both seasons was 100 to1000 times higher than the total cultural bacteria. The concentration of bioaerosol was influenced by the temperature indoors, which was regulated with an electronic fan system driving warm air and particles outside of the SCB. Comparison of the DGGE profiles showed the same biodiversity in each SCB during both seasons. The phylogenetic analysis revealed a large number of sequences (93.8%) related to Gram-positive anaerobic bacteria, such as Clostridia, and dominated by the Clostridia cluster I (C. disporicum) and the Clostridia cluster XI (C. glycolycum). The bioaerosol diversity also contained also a low proportion of Bacteroidetes and Lactobacillales-Streptococcales sequences. Analyses of the global community and phylotype diversity showed that the main source of bioaerosols could come from the pig manure slurry.


PLOS ONE | 2011

Snapshot of the Eukaryotic Gene Expression in Muskoxen Rumen—A Metatranscriptomic Approach

Meng Qi; Pan Wang; Nicholas O'Toole; Perry S. Barboza; Emilio M. Ungerfeld; Mary Beth Leigh; L. Brent Selinger; Greg Butler; Adrian Tsang; Tim A. McAllister; Robert J. Forster

Background Herbivores rely on digestive tract lignocellulolytic microorganisms, including bacteria, fungi and protozoa, to derive energy and carbon from plant cell wall polysaccharides. Culture independent metagenomic studies have been used to reveal the genetic content of the bacterial species within gut microbiomes. However, the nature of the genes encoded by eukaryotic protozoa and fungi within these environments has not been explored using metagenomic or metatranscriptomic approaches. Methodology/Principal Findings In this study, a metatranscriptomic approach was used to investigate the functional diversity of the eukaryotic microorganisms within the rumen of muskoxen (Ovibos moschatus), with a focus on plant cell wall degrading enzymes. Polyadenylated RNA (mRNA) was sequenced on the Illumina Genome Analyzer II system and 2.8 gigabases of sequences were obtained and 59129 contigs assembled. Plant cell wall degrading enzyme modules including glycoside hydrolases, carbohydrate esterases and polysaccharide lyases were identified from over 2500 contigs. These included a number of glycoside hydrolase family 6 (GH6), GH48 and swollenin modules, which have rarely been described in previous gut metagenomic studies. Conclusions/Significance The muskoxen rumen metatranscriptome demonstrates a much higher percentage of cellulase enzyme discovery and an 8.7x higher rate of total carbohydrate active enzyme discovery per gigabase of sequence than previous rumen metagenomes. This study provides a snapshot of eukaryotic gene expression in the muskoxen rumen, and identifies a number of candidate genes coding for potentially valuable lignocellulolytic enzymes.


Journal of Applied Microbiology | 2002

Enumeration of Megasphaera elsdenii in rumen contents by real-time Taq nuclease assay

D. Ouwerkerk; A.V. Klieve; Robert J. Forster

Aims: To develop a real‐time Taq nuclease assay (TNA) to enable the in vivo enumeration of Megasphaera elsdenii.


Applied and Environmental Microbiology | 2013

Changes in the Rumen Epimural Bacterial Diversity of Beef Cattle as Affected by Diet and Induced Ruminal Acidosis

Renee M. Petri; T. Schwaiger; Greg Penner; Karen A. Beauchemin; Robert J. Forster; J. J. McKinnon; T. A. McAllister

ABSTRACT Little is known about the nature of the rumen epithelial adherent (epimural) microbiome in cattle fed different diets. Using denaturing gradient gel electrophoresis (DGGE), quantitative real-time PCR (qPCR), and pyrosequencing of the V3 hypervariable coding region of 16S rRNA, epimural bacterial communities of 8 cattle were profiled during the transition from a forage to a high-concentrate diet, during acidosis, and after recovery. A total of 153,621 high-quality gene sequences were obtained, with populations exhibiting less taxonomic variability among individuals than across diets. The bacterial community composition exhibited clustering (P < 0.03) by diet, with only 14 genera, representing >1% of the rumen epimural population, differing (P ≤ 0.05) among diets. During acidosis, levels of Atopobium, Desulfocurvus, Fervidicola, Lactobacillus, and Olsenella increased, while during the recovery, Desulfocurvus, Lactobacillus, and Olsenella reverted to levels similar to those with the high-grain diet and Sharpea and Succinivibrio reverted to levels similar to those with the forage diet. The relative abundances of bacterial populations changed during diet transition for all qPCR targets except Streptococcus spp. Less than 5% of total operational taxonomic units (OTUs) identified exhibited significant variability across diets. Based on DGGE, the community structures of epithelial populations differed (P ≤ 0.10); segregation was most prominent for the mixed forage diet versus the grain, acidotic challenge, and recovery diets. Atopobium, cc142, Lactobacillus, Olsenella, RC39, Sharpea, Solobacterium, Succiniclasticum, and Syntrophococcus were particularly prevalent during acidosis. Determining the metabolic roles of these key genera in the rumens of cattle fed high-grain diets could define a clinical microbial profile associated with ruminal acidosis.


Applied and Environmental Microbiology | 2007

Postinoculation Protozoan Establishment and Association Patterns of Methanogenic Archaea in the Ovine Rumen

Samuel Ohene-Adjei; Ronald M. Teather; Michael Ivan; Robert J. Forster

ABSTRACT Association patterns between archaea and rumen protozoa were evaluated by analyzing archaeal 16S rRNA gene clone libraries from ovine rumen inoculated with different protozoa. Five protozoan inoculation treatments, fauna free (negative control), holotrich and cellulolytic protozoa, Isotricha and Dasytricha spp., Entodinium spp., and total fauna (type A) were tested. We used denaturing gradient gel electrophoresis, quantitative PCR, and phylogenetic analysis to evaluate the impact of the protozoan inoculants on the respective archaeal communities. Protozoan 18S ribosomal DNA clone libraries were also evaluated to monitor the protozoal population that was established by the inoculation. Phylogenetic analysis suggested that archaeal clones associated with the fauna-free, the Entodinium, and the type A inoculations clustered primarily with uncultured phylotypes. Polyplastron multivesiculatum was the predominant protozoan strain established by the holotrich and cellulolytic protozoan treatment, and this resulted predominantly in archaeal clones affiliated with uncultured and cultured methanogenic phylotypes (Methanosphaera stadtmanae, Methanobrevibacter ruminantium, and Methanobacterium bryantii). Furthermore, the Isotricha and Dasytricha inoculation treatment resulted primarily in archaeal clones affiliated with Methanobrevibacter smithii. This report provides the first assessment of the influence of protozoa on archaea within the rumen microbial community and provides evidence to suggest that different archaeal phylotypes associate with specific groups of protozoa. The observed patterns may be linked to the evolution of commensal and symbiotic relationships between archaea and protozoa in the ovine rumen environment. This report further underscores the prevalence and potential importance of a rather large group of uncultivated archaea in the ovine rumen, probably unrelated to known methanogens and undocumented in the bovine rumen.


Letters in Applied Microbiology | 1996

16S rDNA analysis of Butyrivibrio fibrisolvens: phylogenetic position and relation to butyrate-producing anaerobic bacteria from the rumen of white-tailed deer

Robert J. Forster; Ronald M. Teather; Jianhua Gong; S.-J. Deng

R.J. FORSTER, R.M. TEATHER, J. GONG AND s.‐J. DENG. 1996. Complete 16S rDNA sequences of six strains of Butyrivibrio fibrisolvens, including the type strain (ATCC 19171), were determined. The type strain was found to have less than 89% sequence similarity to the other isolates that were examined. The five plasmid‐bearing strains formed a closely related cluster and three of these strains (OB156, OB157 and OB192) were very highly related (> 99%), indicating that they are isolates of the same genomic species. The phylogenetic position of Butyrivibrio was found to be within the subphylum Clostridzum, of Gram‐positive bacteria. The closest relatives to the type strain were Eubacterium cellulosolvens and Cl. xylanolyticum and the closest relatives to the separately clustered strains were Roseburia cecicola, Lachnospira pectinoschiza and Eubacterium rectale.

Collaboration


Dive into the Robert J. Forster's collaboration.

Top Co-Authors

Avatar

Tim A. McAllister

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Ronald M. Teather

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

T. A. McAllister

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Robert J. Gruninger

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Chijioke O. Elekwachi

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Karen A. Beauchemin

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Jianhua Gong

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Yun Xia

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge