Robert J. Holbrook
Northwestern University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert J. Holbrook.
Current Opinion in Chemical Biology | 2013
Marie C. Heffern; Natsuho Yamamoto; Robert J. Holbrook; Amanda L. Eckermann; Thomas J. Meade
Inorganic complexes are versatile platforms for the development of potent and selective pharmaceutical agents. Cobalt possesses a diverse array of properties that can be manipulated to yield promising drug candidates. Investigations into the mechanism of cobalt therapeutic agents can provide valuable insight into the physicochemical properties that can be harnessed for drug development. This review presents examples of bioactive cobalt complexes with special attention to their mechanisms of action. Specifically, cobalt complexes that elicit biological effects through protein inhibition, modification of drug activity, and bioreductive activation are discussed. Insights gained from these examples reveal features of cobalt that can be rationally tuned to produce therapeutics with high specificity and improved efficacy for the biomolecule or pathway of interest.
ACS Nano | 2014
Andy H. Hung; Robert J. Holbrook; Matthew W. Rotz; Cameron J. Glasscock; Nikhita D. Mansukhani; Keith W. MacRenaris; Lisa M. Manus; Matthew C. Duch; Kevin T. Dam; Mark C. Hersam; Thomas J. Meade
The delivery of bioactive molecules into cells has broad applications in biology and medicine. Polymer-modified graphene oxide (GO) has recently emerged as a de facto noncovalent vehicle for hydrophobic drugs. Here, we investigate a different approach using native GO to deliver hydrophilic molecules by co-incubation in culture. GO adsorption and delivery were systematically studied with a library of 15 molecules synthesized with Gd(III) labels to enable quantitation. Amines were revealed to be a key chemical group for adsorption, while delivery was shown to be quantitatively predictable by molecular adsorption, GO sedimentation, and GO size. GO co-incubation was shown to enhance delivery by up to 13-fold and allowed for a 100-fold increase in molecular incubation concentration compared to the alternative of nanoconjugation. When tested in the application of Gd(III) cellular MRI, these advantages led to a nearly 10-fold improvement in sensitivity over the state-of-the-art. GO co-incubation is an effective method of cellular delivery that is easily adoptable by researchers across all fields.
Molecular Pharmaceutics | 2012
Ryan R. Hurtado; Allison S. Harney; Marie C. Heffern; Robert J. Holbrook; Robert Holmgren; Thomas J. Meade
We describe the use of Co(III) Schiff base-DNA conjugates, a versatile class of research tools that target C2H2 transcription factors, to inhibit the Hedgehog (Hh) pathway. In developing mammalian embryos, Hh signaling is critical for the formation and development of many tissues and organs. Inappropriate activation of the Hedgehog (Hh) pathway has been implicated in a variety of cancers including medulloblastomas and basal cell carcinomas. It is well-known that Hh regulates the activity of the Gli family of C2H2 zinc finger transcription factors in mammals. In Drosophila the function of the Gli proteins is performed by a single transcription factor with an identical DNA binding consensus sequence, Cubitus Interruptus (Ci). We have demonstrated previously that conjugation of a specific 17 base-pair oligonucleotide to a Co(III) Schiff base complex results in a targeted inhibitor of the Snail family C2H2 zinc finger transcription factors. Modification of the oligonucleotide sequence in the Co(III) Schiff base-DNA conjugate to that of Cis consensus sequence (Co(III)-Ci) generates an equally selective inhibitor of Ci. Co(III)-Ci irreversibly binds the Ci zinc finger domain and prevents it from binding DNA in vitro. In a Ci responsive tissue culture reporter gene assay, Co(III)-Ci reduces the transcriptional activity of Ci in a concentration dependent manner. In addition, injection of wild-type Drosophila embryos with Co(III)-Ci phenocopies a Ci loss of function phenotype, demonstrating effectiveness in vivo. This study provides evidence that Co(III) Schiff base-DNA conjugates are a versatile class of specific and potent tools for studying zinc finger domain proteins and have potential applications as customizable anticancer therapeutics.
Nano Letters | 2016
Robert J. Holbrook; Nikhil Rammohan; Matthew W. Rotz; Keith W. MacRenaris; Adam T. Preslar; Thomas J. Meade
Pancreatic adenocarcinoma has a 5 year survival of approximately 3% and median survival of 6 months and is among the most dismal of prognoses in all of medicine. This poor prognosis is largely due to delayed diagnosis where patients remain asymptomatic until advanced disease is present. Therefore, techniques to allow early detection of pancreatic adenocarcinoma are desperately needed. Imaging of pancreatic tissue is notoriously difficult, and the development of new imaging techniques would impact our understanding of organ physiology and pathology with applications in disease diagnosis, staging, and longitudinal response to therapy in vivo. Magnetic resonance imaging (MRI) provides numerous advantages for these types of investigations; however, it is unable to delineate the pancreas due to low inherent contrast within this tissue type. To overcome this limitation, we have prepared a new Gd(III) contrast agent that accumulates in the pancreas and provides significant contrast enhancement by MR imaging. We describe the synthesis and characterization of a new dithiolane-Gd(III) complex and a straightforward and scalable approach for conjugation to a gold nanoparticle. We present data that show the nanoconjugates exhibit very high per particle values of r1 relaxivity at both low and high magnetic field strengths due to the high Gd(III) payload. We provide evidence of pancreatic tissue labeling that includes MR images, post-mortem biodistribution analysis, and pancreatic tissue evaluation of particle localization. Significant contrast enhancement was observed allowing clear identification of the pancreas with contrast-to-noise ratios exceeding 35:1.
Journal of the American Chemical Society | 2013
Mark D. Peterson; Robert J. Holbrook; Thomas J. Meade; Emily A. Weiss
This paper describes the activation of a biologically inert Co(III) Schiff base [Co(III)-SB] complex to its protein inhibitor form by photoinduced electron transfer (PET) from a colloidal PbS quantum dot (QD, radii of 1.5-1.7 nm) to the cobalt center, with a charge separation time constant of 125 ns. Reduction of the Co(III)-SB complex initiates release of the native axial ligands, promoting replacement with the histidine mimic 4-methylimidazole. The rate of ligand displacement increases by a factor of approximately 8 upon exposure of the PbS QD/Co(III)-SB mixture to light with an energy greater than the energy of the first excitonic state of the QDs, from which PET occurs. These results suggest an approach for the preparation of inorganic therapeutic agents that can be specifically coupled to a biologically active site by cooperative redox binding ligation.
Inorganic Chemistry | 2013
Lisa M. Manus; Robert J. Holbrook; Tulay A. Atesin; Marie C. Heffern; Allison S. Harney; Amanda L. Eckermann; Thomas J. Meade
The kinetic and thermodynamic ligand exchange dynamics are important considerations in the rational design of metal-based therapeutics and therefore, require detailed investigation. Co(III) Schiff base complex derivatives of bis(acetylacetone)ethylenediimine [acacen] have been found to be potent enzyme and transcription factor inhibitors. These complexes undergo solution exchange of labile axial ligands. Upon dissociation, Co(III) irreversibly interacts with specific histidine residues of a protein, and consequently alters structure and causes inhibition. To guide the rational design of next generation agents, understanding the mechanism and dynamics of the ligand exchange process is essential. To investigate the lability, pH stability, and axial ligand exchange of these complexes in the absence of proteins, the pD- and temperature-dependent axial ligand substitution dynamics of a series of N-heterocyclic [Co(acacen)(X)(2)](+) complexes [where X = 2-methylimidazole (2MeIm), 4-methylimidazole (4MeIm), ammine (NH(3)), N-methylimidazole (NMeIm), and pyridine (Py)] were characterized by NMR spectroscopy. The pD stability was shown to be closely related to the nature of the axial ligand with the following trend toward aquation: 2MeIm > NH(3) ≫ 4MeIm > Py > Im > NMeIm. Reaction of each [Co(III)(acacen)(X)(2)](+) derivative with 4MeIm showed formation of a mixed ligand Co(III) intermediate via a dissociative ligand exchange mechanism. The stability of the mixed ligand adduct was directly correlated to the pD-dependent stability of the starting Co(III) Schiff base with respect to [Co(acacen)(4MeIm)(2)](+). Crystal structure analysis of the [Co(acacen)(X)(2)](+) derivatives confirmed the trends in stability observed by NMR spectroscopy. Bond distances between the Co(III) and the axial nitrogen atoms were longest in the 2MeIm derivative as a result of distortion in the planar tetradentate ligand, and this was directly correlated to axial ligand lability and propensity toward exchange.
Journal of the American Chemical Society | 2015
Robert J. Holbrook; David J. Weinberg; Mark D. Peterson; Emily A. Weiss; Thomas J. Meade
We describe a mechanism of light activation that initiates protein inhibitory action of a biologically inert Co(III) Schiff base (Co(III)-sb) complex. Photoinduced electron transfer (PET) occurs from a Ru(II) bipyridal complex to a covalently attached Co(III) complex and is gated by conformational changes that occur in tens of nanoseconds. Reduction of the Co(III)-sb by PET initiates displacement of the inert axial imidazole ligands, promoting coordination to active site histidines of α-thrombin. Upon exposure to 455 nm light, the rate of ligand exchange with 4-methylimidazole, a histidine mimic, increases by approximately 5-fold, as observed by NMR spectroscopy. Similarly, the rate of α-thrombin inhibition increases over 5-fold upon irradiation. These results convey a strategy for light activation of inorganic therapeutic agents through PET utilizing redox-active metal centers.
Dalton Transactions | 2013
Lauren M. Matosziuk; Robert J. Holbrook; Lisa M. Manus; Marie C. Heffern; Mark A. Ratner; Thomas J. Meade
Cobalt(III) Schiff base complexes, such as [Co(acacen)L(2)](+), inhibit the function of Zn(II)-dependent proteins through dissociative exchange of the axial ligands with key histidine residues of the target protein. Consequently the efficacy of these compounds depends strongly on the lability of the axial ligands. A series of [Co(acacen)L(2)](+) complexes with various axial ligands was investigated using DFT to determine the kinetics and thermodynamics of ligand exchange and hydrolysis. Results showed excellent agreement with experimental data, indicating that axial ligand lability is determined by several factors: pK(a) of the axial ligand, the kinetic barrier to ligand dissociation, and the relative thermodynamic stability of the complexes before and after exchange. Hammett plots were constructed to determine if the kinetics and thermodynamics of exchange can be modulated by the addition of an electron-withdrawing group (EWG) to either the axial ligand itself or to the equatorial acacen ligand. Results predict that addition of an EWG to the axial ligand will shift the kinetics and thermodynamics so as to promote axial ligand exchange, while addition of an EWG to acacen will decrease axial ligand lability. These investigations will aid in the design of the next generation of [Co(acacen)L(2)](2+), allowing researchers to develop new, more effective inhibitors.
Bioconjugate Chemistry | 2017
Nikhil Rammohan; Robert J. Holbrook; Matthew W. Rotz; Keith W. MacRenaris; Adam T. Preslar; Christiane E. Carney; Viktorie Reichova; Thomas J. Meade
In vivo cell tracking is vital for understanding migrating cell populations, particularly cancer and immune cells. Magnetic resonance (MR) imaging for long-term tracking of transplanted cells in live organisms requires cells to effectively internalize Gd(III) contrast agents (CAs). Clinical Gd(III)-based CAs require high dosing concentrations and extended incubation times for cellular internalization. To combat this, we have devised a series of Gd(III)-gold nanoconjugates (Gd@AuNPs) with varied chelate structure and nanoparticle-chelate linker length, with the goal of labeling and imaging breast cancer cells. These new Gd@AuNPs demonstrate significantly enhanced labeling compared to previous Gd(III)-gold-DNA nanoconstructs. Variations in Gd(III) loading, surface packing, and cell uptake were observed among four different Gd@AuNP formulations suggesting that linker length and surface charge play an important role in cell labeling. The best performing Gd@AuNPs afforded 23.6 ± 3.6 fmol of Gd(III) per cell at an incubation concentration of 27.5 μM-this efficiency of Gd(III) payload delivery (Gd(III)/cell normalized to dose) exceeds that of previous Gd(III)-Au conjugates and most other Gd(III)-nanoparticle formulations. Further, Gd@AuNPs were well-tolerated in vivo in terms of biodistribution and clearance, and supports future cell tracking applications in whole-animal models.
Bioconjugate Chemistry | 2018
Matthew W. Rotz; Robert J. Holbrook; Keith W. MacRenaris; Thomas J. Meade