Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert J. Kavlock is active.

Publication


Featured researches published by Robert J. Kavlock.


Environmental Health Perspectives | 2009

In Vitro Screening of Environmental Chemicals for Targeted Testing Prioritization: The ToxCast Project

Richard S. Judson; Keith A. Houck; Robert J. Kavlock; Thomas B. Knudsen; Matthew T. Martin; Holly M. Mortensen; David M. Reif; Daniel M. Rotroff; Imran Shah; Ann M. Richard; David J. Dix

Background Chemical toxicity testing is being transformed by advances in biology and computer modeling, concerns over animal use, and the thousands of environmental chemicals lacking toxicity data. The U.S. Environmental Protection Agency’s ToxCast program aims to address these concerns by screening and prioritizing chemicals for potential human toxicity using in vitro assays and in silico approaches. Objectives This project aims to evaluate the use of in vitro assays for understanding the types of molecular and pathway perturbations caused by environmental chemicals and to build initial prioritization models of in vivo toxicity. Methods We tested 309 mostly pesticide active chemicals in 467 assays across nine technologies, including high-throughput cell-free assays and cell-based assays, in multiple human primary cells and cell lines plus rat primary hepatocytes. Both individual and composite scores for effects on genes and pathways were analyzed. Results Chemicals displayed a broad spectrum of activity at the molecular and pathway levels. We saw many expected interactions, including endocrine and xenobiotic metabolism enzyme activity. Chemicals ranged in promiscuity across pathways, from no activity to affecting dozens of pathways. We found a statistically significant inverse association between the number of pathways perturbed by a chemical at low in vitro concentrations and the lowest in vivo dose at which a chemical causes toxicity. We also found associations between a small set of in vitro assays and rodent liver lesion formation. Conclusions This approach promises to provide meaningful data on the thousands of untested environmental chemicals and to guide targeted testing of environmental contaminants.


Environmental Health Perspectives | 2013

Improving the human hazard characterization of chemicals: a Tox21 update.

Raymond R. Tice; Christopher P. Austin; Robert J. Kavlock; John R. Bucher

Background: In 2008, the National Institute of Environmental Health Sciences/National Toxicology Program, the U.S. Environmental Protection Agency’s National Center for Computational Toxicology, and the National Human Genome Research Institute/National Institutes of Health Chemical Genomics Center entered into an agreement on “high throughput screening, toxicity pathway profiling, and biological interpretation of findings.” In 2010, the U.S. Food and Drug Administration (FDA) joined the collaboration, known informally as Tox21. Objectives: The Tox21 partners agreed to develop a vision and devise an implementation strategy to shift the assessment of chemical hazards away from traditional experimental animal toxicology studies to one based on target-specific, mechanism-based, biological observations largely obtained using in vitro assays. Discussion: Here we outline the efforts of the Tox21 partners up to the time the FDA joined the collaboration, describe the approaches taken to develop the science and technologies that are currently being used, assess the current status, and identify problems that could impede further progress as well as suggest approaches to address those problems. Conclusion: Tox21 faces some very difficult issues. However, we are making progress in integrating data from diverse technologies and end points into what is effectively a systems-biology approach to toxicology. This can be accomplished only when comprehensive knowledge is obtained with broad coverage of chemical and biological/toxicological space. The efforts thus far reflect the initial stage of an exceedingly complicated program, one that will likely take decades to fully achieve its goals. However, even at this stage, the information obtained has attracted the attention of the international scientific community, and we believe these efforts foretell the future of toxicology.


Biology of Reproduction | 2011

Predictive Model of Rat Reproductive Toxicity from ToxCast High Throughput Screening

Matthew T. Martin; Thomas B. Knudsen; David M. Reif; Keith A. Houck; Richard S. Judson; Robert J. Kavlock; David J. Dix

The U.S. Environmental Protection Agencys ToxCast research program uses high throughput screening (HTS) for profiling bioactivity and predicting the toxicity of large numbers of chemicals. ToxCast Phase I tested 309 well-characterized chemicals in more than 500 assays for a wide range of molecular targets and cellular responses. Of the 309 environmental chemicals in Phase I, 256 were linked to high-quality rat multigeneration reproductive toxicity studies in the relational Toxicity Reference Database. Reproductive toxicants were defined here as having achieved a reproductive lowest-observed-adverse-effect level of less than 500 mg kg−1 day−1. Eight-six chemicals were identified as reproductive toxicants in the rat, and 68 of those had sufficient in vitro bioactivity to model. Each assay was assessed for univariate association with the identified reproductive toxicants. Significantly associated assays were linked to gene sets and used for the subsequent predictive modeling. Using linear discriminant analysis and fivefold cross-validation, a robust and stable predictive model was produced capable of identifying rodent reproductive toxicants with 77% ± 2% and 74% ± 5% (mean ± SEM) training and test cross-validation balanced accuracies, respectively. With a 21-chemical external validation set, the model was 76% accurate, further indicating the models potential for prioritizing the many thousands of environmental chemicals with little to no hazard information. The biological features of the model include steroidal and nonsteroidal nuclear receptors, cytochrome P450 enzyme inhibition, G protein-coupled receptors, and cell signaling pathway readouts—mechanistic information suggesting additional targeted, integrated testing strategies and potential applications of in vitro HTS to risk assessment.


Environmental Health Perspectives | 2009

The Toxicity Data Landscape for Environmental Chemicals

Richard S. Judson; Ann M. Richard; David J. Dix; Keith A. Houck; Matthew T. Martin; Robert J. Kavlock; Vicki L. Dellarco; Tala R. Henry; Todd Holderman; Philip Sayre; Shirlee W. Tan; Thomas L Carpenter; Edwin R. Smith

Objective Thousands of chemicals are in common use, but only a portion of them have undergone significant toxicologic evaluation, leading to the need to prioritize the remainder for targeted testing. To address this issue, the U.S. Environmental Protection Agency (EPA) and other organizations are developing chemical screening and prioritization programs. As part of these efforts, it is important to catalog, from widely dispersed sources, the toxicology information that is available. The main objective of this analysis is to define a list of environmental chemicals that are candidates for the U.S. EPA screening and prioritization process, and to catalog the available toxicology information. Data sources We are developing ACToR (Aggregated Computational Toxicology Resource), which combines information for hundreds of thousands of chemicals from > 200 public sources, including the U.S. EPA, National Institutes of Health, Food and Drug Administration, corresponding agencies in Canada, Europe, and Japan, and academic sources. Data extraction ACToR contains chemical structure information; physical–chemical properties; in vitro assay data; tabular in vivo data; summary toxicology calls (e.g., a statement that a chemical is considered to be a human carcinogen); and links to online toxicology summaries. Here, we use data from ACToR to assess the toxicity data landscape for environmental chemicals. Data synthesis We show results for a set of 9,912 environmental chemicals being considered for analysis as part of the U.S. EPA ToxCast screening and prioritization program. These include high-and medium-production-volume chemicals, pesticide active and inert ingredients, and drinking water contaminants. Conclusions Approximately two-thirds of these chemicals have at least limited toxicity summaries available. About one-quarter have been assessed in at least one highly curated toxicology evaluation database such as the U.S. EPA Toxicology Reference Database, U.S. EPA Integrated Risk Information System, and the National Toxicology Program.


Critical Reviews in Toxicology | 2000

Endocrine-Disrupting Chemicals: Prepubertal Exposures and Effects on Sexual Maturation and Thyroid Activity in the Female Rat. A Focus on the EDSTAC Recommendations

Jerome M. Goldman; Susan C. Laws; Sharon K. Balchak; Ralph L. Cooper; Robert J. Kavlock

In 1996, the US Environmental Protection Agency was given a mandate by Congress to develop a screening program that would evaluate whether variously identified compounds could affect human health by mimicking or interfering with normal endocrine regulatory functions. Toward this end, the Agency chartered the Endocrine Disruptor Screening and Testing Advisory Committee in October of that year that would serve to recommend a series of in vitro and in vivo protocols designed to provide a comprehensive assessment of a chemicals potential endocrine-disrupting activity. A number of these protocols have undergone subsequent modification by EPA, and this review focuses specifically on the revised in vivo screening procedure recommended under the title Research Protocol for Assessment of Pubertal Development and Thyroid Function in Juvenile Female Rats. Background literature has been provided that summarizes what is currently known about pubertal development in the female rat and the influence of various forms of pharmaceutical and toxicological insult on this process and on thyroid activity. Finally, a section is included that discusses technical issues that should be considered if the specified pubertal endpoints are to be measured and successfully evaluated.


Toxicological Sciences | 2012

Integration of Dosimetry, Exposure and High-Throughput Screening Data in Chemical Toxicity Assessment

Barbara A. Wetmore; John F. Wambaugh; Stephen S. Ferguson; Mark A. Sochaski; Daniel M. Rotroff; Kimberly Freeman; Harvey J. Clewell; David J. Dix; Melvin E. Andersen; Keith A. Houck; Brittany Allen; Richard S. Judson; Reetu R. Singh; Robert J. Kavlock; Ann M. Richard; Russell S. Thomas

High-throughput in vitro toxicity screening can provide an efficient way to identify potential biological targets for chemicals. However, relying on nominal assay concentrations may misrepresent potential in vivo effects of these chemicals due to differences in bioavailability, clearance, and exposure. Hepatic metabolic clearance and plasma protein binding were experimentally measured for 239 ToxCast Phase I chemicals. The experimental data were used in a population-based in vitro-to-in vivo extrapolation model to estimate the daily human oral dose, called the oral equivalent dose, necessary to produce steady-state in vivo blood concentrations equivalent to in vitro AC(50) (concentration at 50% of maximum activity) or lowest effective concentration values across more than 500 in vitro assays. The estimated steady-state oral equivalent doses associated with the in vitro assays were compared with chronic aggregate human oral exposure estimates to assess whether in vitro bioactivity would be expected at the dose-equivalent level of human exposure. A total of 18 (9.9%) chemicals for which human oral exposure estimates were available had oral equivalent doses at levels equal to or less than the highest estimated U.S. population exposures. Ranking the chemicals by nominal assay concentrations would have resulted in different chemicals being prioritized. The in vitro assay endpoints with oral equivalent doses lower than the human exposure estimates included cell growth kinetics, cytokine and cytochrome P450 expression, and cytochrome P450 inhibition. The incorporation of dosimetry and exposure provide necessary context for interpretation of in vitro toxicity screening data and are important considerations in determining chemical testing priorities.


Risk Analysis | 2009

Toxicity Testing in the 21st Century: Implications for Human Health Risk Assessment

Robert J. Kavlock; Christopher P. Austin; Raymond R. Tice

The risk analysis perspective by Daniel Krewski and colleagues lays out the long-term vision and strategic plan developed by a National Research Council committee (1), sponsored by the U.S. Environmental Protection Agency (EPA) with support from the U.S. National Toxicology Program (NTP), to “advance the practices of toxicity testing and human health assessment of environmental agents.” Components of the vision include chemical characterization; the use of human cell-based, high-throughput assays that cover the diversity of toxicity pathways; targeted testing using animals to fill in data gaps; dose-response and extrapolation modeling; and the generation and use of population-based and human exposure data for interpreting the results of toxicity tests. The strategic plan recognizes that meeting this vision will require a major research effort conducted over a period of a decade or more to identify all of the important toxicity pathways, and that a clear distinction must be made between which pathway perturbations are truly adverse (i.e., would likely lead to adverse health outcomes in humans) and those that are not. Krewski et al. note that achieving this vision in a reasonable time frame (i.e., decades) would require the involvement of an interdisciplinary research institute that would be coordinated and funded primarily by the U.S. Federal government and which would foster appropriate intramural and extramural research. It is expected that this approach would greatly increase the number of compounds that can be tested, while providing data more directly relevant for conducting human health risk assessment. The NTP though its Roadmap,1 the National Institutes of Health (NIH) Chemical Genomics Center (NCGC) through the Molecular Libraries Initiative,2 and the EPA through its ToxCast™ program3 and its draft Strategic Plan for the Future of Toxicity Testing have individually recognized the need to bring innovation into the assessment of the toxicological activity of chemicals, and each has made progress in doing so. However, the grand challenge put forth by Krewski et al. requires an effort unparalleled in the field of toxicology and risk assessment.


Environmental Health Perspectives | 2010

Endocrine Profiling and Prioritization of Environmental Chemicals Using ToxCast Data

David M. Reif; Matthew T. Martin; Shirlee W. Tan; Keith A. Houck; Richard S. Judson; Ann M. Richard; Thomas B. Knudsen; David J. Dix; Robert J. Kavlock

Background The prioritization of chemicals for toxicity testing is a primary goal of the U.S. Environmental Protection Agency (EPA) ToxCast™ program. Phase I of ToxCast used a battery of 467 in vitro, high-throughput screening assays to assess 309 environmental chemicals. One important mode of action leading to toxicity is endocrine disruption, and the U.S. EPA’s Endocrine Disruptor Screening Program (EDSP) has been charged with screening pesticide chemicals and environmental contaminants for their potential to affect the endocrine systems of humans and wildlife. Objective The goal of this study was to develop a flexible method to facilitate the rational prioritization of chemicals for further evaluation and demonstrate its application as a candidate decision-support tool for EDSP. Methods Focusing on estrogen, androgen, and thyroid pathways, we defined putative endocrine profiles and derived a relative rank or score for the entire ToxCast library of 309 unique chemicals. Effects on other nuclear receptors and xenobiotic metabolizing enzymes were also considered, as were pertinent chemical descriptors and pathways relevant to endocrine-mediated signaling. Results Combining multiple data sources into an overall, weight-of-evidence Toxicological Priority Index (ToxPi) score for prioritizing further chemical testing resulted in more robust conclusions than any single data source taken alone. Conclusions Incorporating data from in vitro assays, chemical descriptors, and biological pathways in this prioritization schema provided a flexible, comprehensive visualization and ranking of each chemical’s potential endocrine activity. Importantly, ToxPi profiles provide a transparent visualization of the relative contribution of all information sources to an overall priority ranking. The method developed here is readily adaptable to diverse chemical prioritization tasks.


Critical Reviews in Toxicology | 2005

Overview: Using mode of action and life stage information to evaluate the human relevance of animal toxicity data

Jennifer Seed; Ed Carney; Rick A. Corley; Kevin M. Crofton; John M. DeSesso; Paul M. D. Foster; Robert J. Kavlock; Gary L. Kimmel; James E. Klaunig; M. E. (Bette) Meek; R J. Preston; William Slikker; Sonia Tabacova; Gary M. Williams; Jeanette Wiltse; Rt Zoeller; Penelope A. Fenner-Crisp; Dorothy E. Patton

A complete mode of action human relevance analysis—as distinct from mode of action (MOA) analysis alone—depends on robust information on the animal MOA, as well as systematic comparison of the animal data with corresponding information from humans. In November 2003, the International Life Sciences Institutes Risk Science Institute (ILSI RSI) published a 2-year study using animal and human MOA information to generate a four-part Human Relevance Framework (HRF) for systematic and transparent analysis of MOA data and information. Based mainly on non-DNA-reactive carcinogens, the HRF features a “concordance” analysis of MOA information from both animal and human sources, with a focus on determining the appropriate role for each MOA data set in human risk assessment. With MOA information increasingly available for risk assessment purposes, this article illustrates the further applicability of the HRF for reproductive, developmental, neurologic, and renal endpoints, as well as cancer. Based on qualitative and quantitative MOA considerations, the MOA/human relevance analysis also contributes to identifying data needs and issues essential for the dose-response and exposure assessment steps in the overall risk assessment.


Toxicological Sciences | 2010

Incorporating Human Dosimetry and Exposure into High-Throughput In Vitro Toxicity Screening

Daniel M. Rotroff; Barbara A. Wetmore; David J. Dix; Stephen S. Ferguson; Harvey J. Clewell; Keith A. Houck; Edward L. LeCluyse; Melvin E. Andersen; Richard S. Judson; Cornelia M. Smith; Mark A. Sochaski; Robert J. Kavlock; Frank Boellmann; Matthew T. Martin; David M. Reif; John F. Wambaugh; Russell S. Thomas

Many chemicals in commerce today have undergone limited or no safety testing. To reduce the number of untested chemicals and prioritize limited testing resources, several governmental programs are using high-throughput in vitro screens for assessing chemical effects across multiple cellular pathways. In this study, metabolic clearance and plasma protein binding were experimentally measured for 35 ToxCast phase I chemicals. The experimental data were used to parameterize a population-based in vitro-to-in vivo extrapolation model for estimating the human oral equivalent dose necessary to produce a steady-state in vivo concentration equivalent to in vitro AC(50) (concentration at 50% of maximum activity) and LEC (lowest effective concentration) values from the ToxCast data. For 23 of the 35 chemicals, the range of oral equivalent doses for up to 398 ToxCast assays was compared with chronic aggregate human oral exposure estimates in order to assess whether significant in vitro bioactivity occurred within the range of maximum expected human oral exposure. Only 2 of the 35 chemicals, triclosan and pyrithiobac-sodium, had overlapping oral equivalent doses and estimated human oral exposures. Ranking by the potencies of the AC(50) and LEC values, these two chemicals would not have been at the top of a prioritization list. Integrating both dosimetry and human exposure information with the high-throughput toxicity screening efforts provides a better basis for making informed decisions on chemical testing priorities and regulatory attention. Importantly, these tools are necessary to move beyond hazard rankings to estimates of possible in vivo responses based on in vitro screens.

Collaboration


Dive into the Robert J. Kavlock's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard S. Judson

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Keith A. Houck

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Matthew T. Martin

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Thomas B. Knudsen

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Neil Chernoff

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

David M. Reif

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Ann M. Richard

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge