Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert J. Mayer is active.

Publication


Featured researches published by Robert J. Mayer.


Rangeland Journal | 2015

Seed bank longevity and age to reproductive maturity of Calotropis procera (Aiton) W.T. Aiton in the dry tropics of northern Queensland

F. F. Bebawi; S. D. Campbell; Robert J. Mayer

Understanding the reproductive biology of Calotropis procera (Aiton) W.T. Aiton, an invasive weed of northern Australia, is critical for development of effective management strategies. Two experiments are reported on. In Experiment 1 seed longevity of C. procera seeds, exposed to different soil type (clay and river loam), pasture cover (present and absent) and burial depth (0, 2.5, 10 and 20 cm) treatments were examined. In Experiment 2 time to reach reproductive maturity was studied. The latter experiment included its sister species, C. gigantea (L.) W.T. Aiton, for comparison and two separate seed lots were tested in 2009 and 2012 to determine if exposure to different environmental conditions would influence persistence. Both seed lots demonstrated a rapid decline in viability over the first 3 months and declined to zero between 15 and 24 months after burial. In Experiment 1, longevity appeared to be most influenced by rainfall patterns and associated soil moisture, burial depth and soil type, but not the level of pasture cover. Experiment 2 showed that both C. procera and C. gigantea plants could flower once they had reached an average height of 85 cm. However, they differed significantly in terms of basal diameter at first flowering with C. gigantea significantly smaller (31 mm) than C. procera (45 mm). On average, C. gigantea flowered earlier (125 days vs 190 days) and set seed earlier (359 days vs 412 days) than C. procera. These results suggest that, under similar conditions to those that prevailed in the present studies, land managers could potentially achieve effective control of patches of C. procera in 2 years if they are able to kill all original plants and treat seedling regrowth frequently enough to prevent it reaching reproductive maturity. This suggested control strategy is based on the proviso that replenishment of the seed bank is not occurring from external sources (e.g. wind and water dispersal).


Rangeland Journal | 2012

Persistence of bellyache bush (Jatropha gossypifolia L.) soil seed banks.

F. F. Bebawi; S. D. Campbell; Robert J. Mayer

Bellyache bush (Jatropha gossypifolia L.) is an invasive shrub that adversely impacts agricultural and natural systems of northern Australia. While several techniques are available to control bellyache bush, depletion of soil seed banks is central to its management. A 10-year study determined the persistence of intact and ant-discarded bellyache bush seeds buried in shade cloth packets at six depths (ranging from 0 to 40 cm) under both natural rainfall and rainfall-excluded conditions. A second study monitored changes in seedling emergence over time, to provide an indication of the natural rate of seed bank depletion at two sites (rocky and heavy clay) following the physical removal of all bellyache bush plants. Persistence of seed in the burial trial varied depending on seed type, rainfall conditions and burial depth. No viable seeds of bellyache bush remained after 72 months irrespective of seed type under natural rainfall conditions. When rainfall was excluded seeds persisted for much longer, with a small portion (0.4%) of ant-discarded seeds still viable after 120 months. Seed persistence was prolonged (> 96 months to decline to < 1% viability) at all burial depths under rainfall-excluded conditions. In contrast, under natural rainfall, surface located seeds took twice as long (70 months) to decline to 1% viability compared with buried seeds (35 months). No seedling emergence was observed after 58 months and 36 months at the rocky and heavy clay soil sites, respectively. These results suggest that the required duration of control programs on bellyache bush may vary due to the effect of biotic and abiotic factors on persistence of soil seed banks.


Rangeland Journal | 2016

Seed bank persistence and germination of chinee apple (Ziziphus mauritiana Lam.)

F. F. Bebawi; S. D. Campbell; Robert J. Mayer

Chinee apple (Ziziphus mauritiana Lam.) is a thorny tree that is invading tropical woodlands of northern Australia. The present study reports three experiments related to the seed dynamics of chinee apple. Experiment 1 and 2 investigated persistence of seed lots under different soil types (clay and river loam), levels of pasture cover (present or absent) and burial depths (0, 2.5, 10 and 20 cm). Experiment 3 determined the germination response of chinee apple seeds to a range of alternating day/night temperatures (11/6°C up to 52/40°C). In the longevity experiments (Expts 1 and 2), burial depth, soil type and burial duration significantly affected viability. Burial depth had the greatest influence, with surface located seeds generally persisting for longer than those buried below ground. Even so, no viable seeds remained after 18 and 24 months in the first and second experiment, respectively. In Expt 3 seeds of chinee apple germinated under a wide range of alternating day/night temperatures ranging from 16/12°C to 47 /36°C. Optimal germination (77%) occurred at 33/27°C and no seeds germinated at either of the lowest (11/6°C) or highest (52/40°C) temperature regimes tested. These findings indicated that chinee apple has the potential to expand its current distribution to cooler areas of Australia. Control practices need to be undertaken for at least two years to exhaust the seed bank.


Rangeland Journal | 2011

Impact of control strategies on bellyache bush (Jatropha gossypiifolia L.) mortality, seedling recruitment, population dynamics, pasture yield and cost analysis.

F. F. Bebawi; J. Vitelli; S. D. Campbell; Robert J. Mayer

Bellyache bush (Jatropha gossypiifolia L.) is an invasive weed that has the potential to greatly reduce biodiversity and pasture productivity in northern Australia’s rangelands. This paper reports an approach to develop best practice options for controlling medium to dense infestations of bellyache bush using combinations of control methods. The efficacy of five single treatments including foliar spraying, slashing, stick raking, burning and do nothing (control) were compared against 15 combinations of these treatments over 4 successive years. Treatments were evaluated using several attributes, including plant mortality, changes in population demographics, seedling recruitment, pasture yield and cost of treatment. Foliar spraying once each year for 4 years proved the most cost-effective control strategy, with no bellyache bush plants recorded at the end of the study. Single applications of slashing, stick raking and to a lesser extent burning, when followed up with foliar spraying also led to significantly reduced densities of bellyache bush and changed the population from a growing one to a declining one. Total experimental cost estimates over 4 successive years for treatments where burning, stick raking, foliar spraying, and slashing were followed with foliar spraying were AU


Rangeland Journal | 2013

Can competition with pasture be used to manipulate bellyache bush (Jatropha gossypiifolia L.) population biology

F. F. Bebawi; S. D. Campbell; Robert J. Mayer

408, AU


Rangeland Journal | 2017

Seed ecology of Captain Cook tree [Cascabela thevetia (L.) Lippold] – germination and longevity

F. F. Bebawi; S. D. Campbell; Robert J. Mayer

584, AU


Plant protection quarterly | 2005

Phenology of bellyache bush (Jatropha gossypiifolia L.) in northern Queensland.

F. F. Bebawi; Robert J. Mayer; S. D. Campbell

802 and AU


Plant protection quarterly | 2005

Flowering and capsule production of bellyache bush (Jatropha gossypiifolia L.).

F. F. Bebawi; Robert J. Mayer; S. D. Campbell

789 ha–1, respectively. Maximum pasture yield of 5.4 t ha–1 occurred with repeated foliar spraying. This study recommends that treatment combinations using either foliar spraying alone or as a follow up with slashing, stick raking or burning are best practice options following consideration of the level of control, changes in pasture yield and cost effectiveness.


Rangeland Journal | 2014

Effects of light conditions and plant density on growth and reproductive biology of Cascabela thevetia (L.) Lippold

F. F. Bebawi; S. D. Campbell; Robert J. Mayer

Bellyache bush (Jatropha gossypiifolia L.) is an invasive weed that poses economic and environmental problems in northern Australia. Competition between pasture and bellyache bush was examined in North Queensland using combinations of five pasture treatments (uncut (control); cut as low, medium, and high pasture; and no pasture) and four bellyache bush densities (0, 2, 6 and 12plantsm(-2)) in a buffel grass (Cenchrus ciliaris L.) dominated pasture. The pasture treatments were applied approximately once per year but no treatments were applied directly to the bellyache bush plants. Measurements of bellyache bush flowering, seed formation, and mortality were undertaken over a 9-year period, along with monitoring the pasture basal cover and plant species diversity. Maximum flowering rates of bellyache bush occurred after 9 years (97%) in plots containing no pasture, with the lowest rates of 9% in uncut control plots. Earliest flowering (322 days after planting) and seed formation (411 days) also occurred in plots with no pasture compared with all other pasture treatments (range 1314-1393 days for seed formation to occur). No seeds were produced in uncut plots. At the end of 9 years, mortality rates of bellyache bush plants initially planted averaged 73% for treatments with some pasture compared with 55% under the no-pasture treatment. The percentage of herbaceous plant basal cover in uncut plots was increased 5-fold after 9 years, much greater than the average 2% increase recorded across the low, medium, and high pasture treatments. The number of herbaceous species in uncut plots remained largely unchanged, whereas there was an average reduction of 46% in the cut pasture treatments. Buffel grass remained the species with the greatest basal cover across all cut pasture treatments, followed by sabi grass (Urochloa mosambicensis (Hack.) Dandy) and then red Natal grass (Melinis repens (Willd.) Ziska). These results suggest that grazing strategies that maintain a healthy and competitive pasture layer may contribute to reducing the rate of spread of bellyache bush and complement traditional control techniques such as the use of herbicides.


Rangeland Journal | 2016

Seed fall, seed predation, twigging and litter fall of Cascabela thevetia (L.) Lippold

F. F. Bebawi; S. D. Campbell; Robert J. Mayer

Cascabela thevetia (L.) Lippold (Apocynaceae), commonly known as Captain Cook tree or yellow oleander, has established large infestations in riparian areas along several creeks and rivers in northern Queensland. To better understand the ecology of C. thevetia and the implications for its spread and management, this study reports seven experiments related to the seed ecology of its yellow and peach biotypes. We quantified its germination response to ambient (Experiment 1a and 1b), alternating and constant temperature (Experiment 2a and 2b) regimes and exposure to different light conditions (Experiment 3). Seed longevity under two soil types, two levels of pasture cover and three burial depths was also determined (Experiment 4a and 4b). Both loose seeds and seeds still within pods (kernels) of the two biotypes of C. thevetia were able to germinate in all months of the year in northern Queensland, irrespective of the large differences in monthly ambient temperatures experienced at the Charters Towers study site. Both biotypes also germinated across a wide range of alternating day/night temperatures from 16/12°C to 47/37°C and constant temperatures from 17°C to 44.0°C. Germination of the two biotypes was significantly greater (4-fold) and faster (7 days earlier) under shade than under natural light conditions. Over all biotypes, soil types, levels of pasture cover and burial depths, no seeds of C. thevetia remained viable after 2 years: longevity was much less in many circumstances. The results demonstrate that C. thevetia seeds can germinate over a wide temperature range, whereas the ability of seed to remain viable at low temperatures highlights the potential for expansion of its current potential distribution towards southern latitudes of the Australian continent. Across all experimental conditions, the yellow biotype displayed superior seed germination and viability traits compared with the peach biotype. Seed banks of the peach and yellow biotypes of C. thevetia are short-lived (2 years), which may be exploited when developing management strategies to reduce its impacts.

Collaboration


Dive into the Robert J. Mayer's collaboration.

Top Co-Authors

Avatar

F. F. Bebawi

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

S. D. Campbell

Queensland Department of Natural Resources and Mines

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge