Robert J. McCann
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert J. McCann.
Acta Mathematica | 1996
Wilfrid Gangbo; Robert J. McCann
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 1. Summary of main results . . . . . . . . . . . . . . . . . . . . . . . . 120 2. Background on optimal measures . . . . . . . . . . . . . . . . . . . 126 Part I. Strictly convex costs . . . . . . . . . . . . . . . . . . . . . . . . . . 133 3. Existence and uniqueness of optimal maps . . . . . . . . . . . . . 133 4. Characterization of the optimal map . . . . . . . . . . . . . . . . . 137 Part II. Costs which are strictly concave as a function of d i s t a n c e . . . 141 5. The role of optimal maps . . . . . . . . . . . . . . . . . . . . . . . . 141 6. Uniqueness of optimal solutions . . . . . . . . . . . . . . . . . . . . 144 Part III. Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 A. Legendre transforms and conjugate costs . . . . . . . . . . . . . . 148 B. Examples of c-concave potentials . . . . . . . . . . . . . . . . . . . 152 C. Regularity of c-concave potentials . . . . . . . . . . . . . . . . . . 154 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Geometric and Functional Analysis | 2001
Robert J. McCann
Abstract. Let (M,g) be a connected compact manifold, C3 smooth and without boundary, equipped with a Riemannian distance d(x,y). If
Duke Mathematical Journal | 1995
Robert J. McCann
s : M \to M
Revista Matematica Iberoamericana | 2003
José A. Carrillo; Robert J. McCann; Cédric Villani
is merely Borel and never maps positive volume into zero volume, we show
Journal of the American Mathematical Society | 2002
Luis A. Caffarelli; Mikhail Feldman; Robert J. McCann
s = t \circ u
Journal of the European Mathematical Society | 2010
Young-Heon Kim; Robert J. McCann
factors uniquely a.e. into the composition of a map
Communications in Partial Differential Equations | 2009
Daniel Matthes; Robert J. McCann; Giuseppe Savaré
t(x) = {\rm exp}_x[-\nabla\psi(x)]
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences | 1999
Robert J. McCann
and a volume-preserving map
Transactions of the American Mathematical Society | 2002
Mikhail Feldman; Robert J. McCann
u : M \to M
American Journal of Mathematics | 2010
Robert J. McCann; Peter M. Topping
, where