Robert J. Ono
IBM
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert J. Ono.
Advanced Materials | 2014
Chuan Yang; Xin Ding; Robert J. Ono; Haeshin Lee; Li Yang Hsu; Yen Wah Tong; James L. Hedrick; Yi Yan Yang
An antibacterial and antifouling surface is obtained by simple one-step immersion of a catheter surface with brush-like polycarbonates containing pendent adhesive dopamine, antifouling polyethylene glycol (PEG), and antibacterial cations. This coating demonstrates excellent antibacterial and antifouling activities against both Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria, proteins, and platelets, good stability under simulated blood-flow conditions, and no toxicity.
Advanced Drug Delivery Reviews | 2014
Victor Wee Lin Ng; Julian M. W. Chan; Haritz Sardon; Robert J. Ono; Jeannette M. Garcia; Yi Yan Yang; James L. Hedrick
The rapid emergence of antibiotic resistance in pathogenic microbes is becoming an imminent global public health problem. Treatment with conventional antibiotics often leads to resistance development as the majority of these antibiotics act on intracellular targets, leaving the bacterial morphology intact. Thus, they are highly prone to develop resistance through mutation. Much effort has been made to develop macromolecular antimicrobial agents that are less susceptible to resistance as they function by microbial membrane disruption. Antimicrobial hydrogels constitute an important class of macromolecular antimicrobial agents, which have been shown to be effective in preventing and treating multidrug-resistant infections. Advances in synthetic chemistry have made it possible to tailor molecular structure and functionality to impart broad-spectrum antimicrobial activity as well as predictable mechanical and rheological properties. This has significantly broadened the scope of potential applications that range from medical device and implant coating, sterilization, wound dressing, to antimicrobial creams for the prevention and treatment of multidrug-resistant infections. In this review, advances in both chemically and physically cross-linked natural and synthetic hydrogels possessing intrinsic antimicrobial properties or loaded with antibiotics, antimicrobial polymers/peptides and metal nanoparticles are highlighted. Relationships between physicochemical properties and antimicrobial activity/selectivity, and possible antimicrobial mechanisms of the hydrogels are discussed. Approaches to mitigating toxicity of metal nanoparticles that are encapsulated in hydrogels are reviewed. In addition, challenges and future perspectives in the development of safe and effective antimicrobial hydrogel systems especially involving co-delivery of antimicrobial polymers/peptides and conventional antimicrobial agents for eventual clinical applications are presented.
Journal of Controlled Release | 2014
Xiyu Ke; Victor Wee Lin Ng; Robert J. Ono; Julian M. W. Chan; Sangeetha Krishnamurthy; Ying Wang; James L. Hedrick; Yi Yan Yang
Polymeric micelles self-assembled from biodegradable amphiphilic block copolymers have been proven to be effective drug delivery carriers that reduce the toxicity and enhance the therapeutic efficacy of free drugs. Several reviews have been reported in the literature to discuss the importance of size/size distribution, stability and drug loading capacity of polymeric micelles for successful in vivo drug delivery. This review is focused on non-covalent and covalent interactions that are employed to enhance cargo loading capacity and in vivo stability, and to achieve nanosize with narrow size distribution. In particular, this review analyzes various non-covalent and covalent interactions and chemistry applied to introduce these interactions to the micellar drug delivery systems, as well as the effects of these interactions on micelle stability, drug loading capacity and release kinetics. Moreover, the factors that influence these interactions and the future research directions of polymeric micelles are discussed.
Polymer Chemistry | 2014
Haritz Sardon; Julian M. W. Chan; Robert J. Ono; David Mecerreyes; James L. Hedrick
A facile method for the synthesis of high molecular weight functionalized polyurethanes from a novel pentafluorophenyl ester-containing diol precursor is described. Specifically, polyurethanes containing the activated ester sidechains were synthesized via triflic acid-catalyzed polyaddition of the above diol with diisocyanates. This was followed by quantitative postpolymerization modification of the sidechains with various primary amines. This method represents an efficient and modular synthetic strategy for the preparation of functionalized polyurethanes.
Macromolecular Bioscience | 2016
Mehmet Isik; Jeremy P. K. Tan; Robert J. Ono; Ana Sanchez-Sanchez; David Mecerreyes; Yi Yan Yang; James L. Hedrick; Haritz Sardon
There is a growing interest in modern healthcare to develop systems able to fight antibiotic resistant bacteria. Antimicrobial cationic biodegradable polymers able to mimic antimicrobial peptides have shown to be effective against both Gram-positive and Gram-negative bacteria. In these systems, the hydrophilic-hydrophobic ratio and the cationic charge density play a pivotal role in defining the killing efficiency. Nevertheless, many of these antimicrobial polymers show relatively low selectivity as defined by the relative toxicity to mammalian cells or hemolysis relative to pathogens. In this study, a series of polycarbonates containing pendant quaternary ammoniums are used to understand the role of different counter-anions including chloride, citrate, malonate, benzoate, acetate, lactate and trifluoroacetate, and the antibiotic penicillin on antimicrobial efficacy and selectivity. Interestingly, it is found that in spite of the strong antimicrobial activity of trifluoroacetate and benzoate anions, they prove to be much less hemolytic than chloride anion. It is believed that the proper selection of the anion could enhance the potential of antimicrobial polymers to fight against clinically relevant pathogenic infections, while concurrently mitigating harmful side effects.
Biomaterials | 2017
Shaoqiong Liu; Robert J. Ono; Hong Wu; Jye Yng Teo; Zhen Chang Liang; Kaijin Xu; Musan Zhang; Guansheng Zhong; Jeremy P. K. Tan; Michelle Ng; Chuan Yang; Julian Chan; Zhongkang Ji; Chang Bao; Kiran Kumar; Shujun Gao; Ashlynn L. Z. Lee; Mareva Fevre; Huihui Dong; Jackie Y. Ying; Lanjuan Li; Weimin Fan; James L. Hedrick; Yi Yan Yang
Effective antimicrobial agents are important arsenals in our perennial fight against communicable diseases, hospital-acquired and surgical site multidrug-resistant infections. In this study, we devise a strategy for the development of highly efficacious and skin compatible yet inexpensive water-soluble macromolecular antimicrobial polyionenes by employing a catalyst-free, polyaddition polymerization using commercially available monomers. A series of antimicrobial polyionenes are prepared through a simple polyaddition reaction with both polymer-forming reaction and charge installation occurring simultaneously. The compositions and structures of polymers are modulated to study their effects on antimicrobial activity against a broad spectrum of pathogenic microbes. Polymers with optimized compositions have potent antimicrobial activity with low minimum inhibitory concentrations of 1.95-7.8xa0μg/mL and high selectivity over mammalian cells. In particular, a killing efficiency of more than 99.9% within 2xa0min is obtained. Moreover, the polymers demonstrate high antimicrobial efficacy against various clinically-isolated multidrug-resistant microbes, yet exhibit vastly superior skin biocompatibility in mice as compared to other clinically used surgical scrubs (chlorhexidine and betadine). Microbicidal activity of the polymer is mediated via membrane lysis as demonstrated by confocal microscopy. Unlike small molecular antibiotics, repeated use of the polymer does not induce drug resistance. More importantly, the polymer shows excellent bactericidal activity in a P.xa0aeruginosa-contaminated mouse skin model. Given their rapid and efficacious microbicidal activity and skin compatibility, these polymers have tremendous potential to be developed as surgical scrubs/hand sanitizers to prevent multidrug-resistant infections.
Polymer Chemistry | 2016
Christoph Englert; Mareva Fevre; Rudy J. Wojtecki; Wei Cheng; Qingxing Xu; Chuan Yang; Xiyu Ke; Matthias Hartlieb; Kristian Kempe; Jeannette M. Garcia; Robert J. Ono; Ulrich S. Schubert; Yi Yan Yang; James L. Hedrick
Commercially-available linear and branched PEIs (LPEI and BPEI) were chemically-modified with carbohydrates and carbohydrate-mimetics to improve biocompatibility. Hydroxyl moieties were installed in a close proximity via reaction of PEIs amines with paraformaldehyde (pF) or glycidol. Mixing PEI with pF led to the formation of hemiaminal moieties as well as N-methylation of the backbone through an Eschweiler–Clarke-type rearrangement. The amount of attached hydroxyl groups depended on the initial amount of pF and the results were in agreement with NMR studies on model reactions with primary and secondary amines. The primary amines of BPEI triggered the ring-opening of glycidol and sugar-containing epoxides, in methanol and at room temperature. PEI chains modified with pF displayed the same cytotoxicity as the parent polymer, unless a sufficient amount of pF was added to trigger N-methylation of the backbone. In contrast, glycidol and sugar-functionalized BPEIs exhibited lower toxicity but similar (if not higher) transfection efficiency as compared to unmodified BPEI.
Advanced Healthcare Materials | 2017
Jeremy P. K. Tan; Daniel J. Coady; Haritz Sardon; Alexander Yuen; Shujun Gao; Shaun W. Lim; Zhen Chang Liang; Eddy W. Tan; Shrinivas Venkataraman; Amanda C. Engler; Mareva Fevre; Robert J. Ono; Yi Yan Yang; James L. Hedrick
In this study, antimicrobial polymers are synthesized by the organocatalytic ring-opening polymerization of an eight-membered heterocyclic carbonate monomer that is subsequently quaternized with methyl iodide. These polymers demonstrate activity against clinically relevant Gram-positive Staphylococcus epidermidis and Staphylococcus aureus, Gram-negative Escherichia coli and Pseudomonas aeruginosa, and fungus Candida albicans with fast killing kinetics. Importantly, the polymer efficiently inhibits biofilm growth and lyses existing biofilm, leading to a reduction in biomass and cell viability. In addition, the macromolecular antimicrobial is less likely to induce resistance as it acts via a membrane-lytic mechanism. The polymer is not cytotoxic toward mammalian cells with LD50 of 99.0 ± 11.6 mg kg-1 in mice through i.v. injection. In an S. aureus blood stream infection mouse model, the polymer removes bacteria from the blood more rapidly than the antibiotic Augmentin. At the effective dose, the polymer treatment does not damage liver and kidney tissues or functions. In addition, blood electrolyte balance remains unchanged after the treatment. The low cost of starting materials, ease of synthesis, nontoxicity, broad spectrum activity with fast killing kinetics, and in vivo antimicrobial activity make these macromolecular antimicrobials ideal candidates for prevention of sepsis and treatment of infections.
Polymer Chemistry | 2016
Musan Zhang; Jye Jyn Teo; Shaoqiong Liu; Zhen Chang Liang; Xin Ding; Robert J. Ono; Gregory Breyta; Amanda C. Engler; Daniel J. Coady; Jeanette M. Garcia; Alshakim Nelson; Yi Yan Yang; James L. Hedrick
In this study, cost-effective macromolecular antimicrobials for applications in consumer care products were targeted. Our strategy for inexpensive yet highly efficacious macromolecular antimicrobials employs organocatalytic step-growth polymerization of commercially available monomers and catalysts. Importantly, bulk polymerization conditions were sought to mitigate the cost, reduce solvent waste, and eliminate polymer purification and isolation steps. Moreover, diffusion-controlled, bulk polymerization conditions limited the polymer number-average molecular weights (Mn) to ∼5000–10000 g mol−1, as the activity and selectivity was independent of molecular weight. The modest molecular weights enable the polymers to be soluble/processable for subsequent quaternization. A number of polymer-forming reactions were investigated including ester, amide, urea, and guanidinium formation. Of these polymers, polyamides quaternized with methyl iodide or benzyl bromide exhibited excellent water-solubility and potent antimicrobial activity against a panel of clinically relevant microbes including multidrug-resistant P. aeruginosa. These polymers contain amide bonds, which remain intact in aqueous solution (even in a weakly alkaline environment), thereby increasing their suitability for personal care products due to the long shelf-life. The introduction of Jeffamine to the polymers as a means to further reduce cost does not change antimicrobial potency, but significantly increases compatibility to mammalian cells, further justifying its potential use in personal care products. The advantages of this approach addresses not only the cost-related challenges of polymerization scale-up, but also the synthetic versatility necessary to explore a variety of chemical functional groups and tune the polymer amphiphilicity for targeted antimicrobial performance, as well as cytotoxicity.
ACS Applied Materials & Interfaces | 2018
Ashlynn L. Z. Lee; Zhi Xiang Voo; Willy Chin; Robert J. Ono; Chuan Yang; Shujun Gao; James L. Hedrick; Yi Yan Yang
In this study, bortezomib (BTZ, a cytotoxic water-insoluble anticancer drug) was encapsulated in micellar nanoparticles having a catechol-functionalized polycarbonate core through a pH-sensitive covalent bond between phenylboronic acid (PBA) in BTZ and catechol, and these drug-loaded micelles were incorporated into hydrogels to form micelle/hydrogel composites. A series of injectable, biodegradable hydrogels with readily tunable mechanical properties were formed and optimized for sustained delivery of the BTZ-loaded micelles through ionic coacervation between PBA-functionalized polycarbonate/poly(ethylene glycol) (PEG) ABA triblock copolymer and a cationic one having guanidinium- or thiouronium-functionalized polycarbonate as A block. An in vitro release study showed the pH dependence in BTZ release. At pH 7.4, the BTZ release from the micelle/hydrogel composite remained low at 7%, whereas in an acidic environment, ∼85% of BTZ was released gradually over 9 days. In vivo studies performed in a multiple myeloma MM.1S xenograft mouse model showed that the tumor progression of mice treated with BTZ-loaded micelle solution was similar to that of the control group, whereas those treated with the BTZ-loaded micelle/hydrogel composite resulted in significant delay in the tumor progression. The results demonstrate that this hydrogel has great potential for use in subcutaneous and sustained delivery of drug-loaded micelles with superior therapeutic efficacy.