Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert J. Paproski is active.

Publication


Featured researches published by Robert J. Paproski.


Biomedical Optics Express | 2011

Tyrosinase as a dual reporter gene for both photoacoustic and magnetic resonance imaging

Robert J. Paproski; Alexander Forbrich; Keith Wachowicz; Mary Hitt; Roger J. Zemp

Reporter genes are useful scientific tools for analyzing promoter activity, transfection efficiency, and cell migration. The current study has validated the use of tyrosinase (involved in melanin production) as a dual reporter gene for magnetic resonance and photoacoustic imaging. MCF-7 cells expressing tyrosinase appear brown due to melanin. Magnetic resonance imaging of tyrosinase-expressing MCF-7 cells in 300 μL plastic tubes displayed a 34 to 40% reduction in T1 compared to normal MCF-7 cells when cells were incubated with 250 μM ferric citrate. Photoacoustic imaging of tyrosinase-expressing MCF-7 cells in 700 μm plastic tubes displayed a 20 to 57-fold increase in photoacoustic signal compared to normal MCF-7 cells. The photoacoustic signal from tyrosinase-expressing MCF-7 cells was significantly greater than blood at 650 nm, suggesting that tyrosinase-expressing cells can be differentiated from the vasculature with in vivo photoacoustic imaging. The imaging results suggest that tyrosinase is a useful reporter gene for both magnetic resonance and photoacoustic imaging.


Molecular Pharmacology | 2008

The Role of Human Nucleoside Transporters in Uptake of 3′-Deoxy-3′-fluorothymidine

Robert J. Paproski; Amy M. L. Ng; Sylvia Y. M. Yao; Kathryn Graham; James D. Young; Carol E. Cass

3′-Deoxy-3′-fluorothymidine (FLT) is a positron emission tomography (PET) tracer used to identify proliferating tumor cells. The purpose of this study was to characterize FLT transport by human nucleoside transporters (hNTs) and to determine the role of hNTs for FLT uptake in various human cancer cell lines. FLT binding to hNTs was monitored by the inhibitory effects of FLT on [3H]uridine uptake in yeast cells producing recombinant hNT proteins. hCNT1 displayed the lowest FLT Ki value for inhibition of [3H]uridine uptake, followed by hCNT3, hENT2, hENT1, and hCNT2. [3H]FLT was efficiently transported in Xenopus laevis oocytes individually producing hENT1, hENT2, hCNT1, or hCNT3. [3H]FLT uptake in MCF-7, A549, U251, A498, MIA PaCa-2, and Capan-2 cells was inhibited at least 50% by the hENT1 inhibitor nitrobenzylmercaptopurine ribonucleoside (NBMPR). According to results of real-time polymerase chain reactions, hENT1 and hENT2 had the most abundant hNT transcripts in all cell lines. Cell lines also underwent 1) [3H]NBMPR equilibrium binding assays with or without 5-S-{2-(1-[(fluorescein-5-yl)thioureido]hexanamido)ethyl}-6-N-(4-nitrobenzyl)-5-thioadenosine, a membrane-impermeable NBMPR analog, to determine plasma membrane hENT1 levels, and 2) dose-response NBMPR inhibition of [3H]FLT uptake. MCF-7, A549, and Capan-2 cells displayed NBMPR IC50 values that were smaller or equal to NBMPR Kd values, suggesting that 50% inhibition of hENT1 reduced [3H]FLT uptake by at least 50%. A strong correlation between extracellular NBMPR binding sites/cell and [3H]FLT uptake was observed for all cell lines except MIA PaCa-2. These data suggest that plasma membrane hNTs (especially hENT1) are important determinants of cellular FLT uptake.


The Journal of Nuclear Medicine | 2010

Biodistribution and Uptake of 3′-Deoxy-3′-Fluorothymidine in ENT1-Knockout Mice and in an ENT1-Knockdown Tumor Model

Robert J. Paproski; Melinda Wuest; Hans-Sonke Jans; Kathryn Graham; Wendy P. Gati; Steve McQuarrie; Alexander J.B. McEwan; John R. Mercer; James D. Young; Carol E. Cass

18F-3′-Deoxy-3′-fluorothymidine (18F-FLT) is a PET tracer that accumulates in proliferating tissues. The current study was undertaken to determine whether equilibrative nucleoside transporter 1 (ENT1) is important for 18F-FLT uptake in normal tissues and tumors. Methods: ENT1-knockout (ENT1−/−) mice were generated and compared with wild-type (ENT1+/+) mice using small-animal 18F-FLT PET. In addition, ENT1+/+ mice were also injected with the ENT1 inhibitor nitrobenzylmercaptopurine ribonucleoside phosphate (NBMPR-P) at 1 h before radiotracer injection, followed by 18F-FLT small-animal PET. Tissues of interest were analyzed for thymidine kinase 1 and nucleoside transporters by immunoblotting and immunohistochemistry, respectively, and plasma thymidine levels were analyzed by liquid chromatography–mass spectrometry. Human lung carcinoma A549 cells were stably transfected with pSUPER-producing short-hairpin RNA against human ENT1 (hENT1) or a scrambled sequence with no homology to mammalian genes (A549-pSUPER-hENT1 and A549-pSUPER-SC, respectively). Cultured transfected cells were characterized for hENT1 transcript levels and 18F-FLT uptake using real-time polymerase chain reaction and 3H-FLT uptake assays, respectively. Transfected A549 cells were grown as xenograft tumors in NIH-III mice, which were analyzed by 18F-FLT small-animal PET. Results: Compared with noninjected ENT1+/+ mice, ENT1+/+ mice injected with NBMPR-P and ENT1−/− mice displayed a reduced percentage injected dose per gram (%ID/g) for 18F-FLT in the blood (84 and 81%, respectively) and an increased %ID/g for 18F-FLT in the spleen (188 and 469%, respectively) and bone marrow (266 and 453%, respectively). ENT1−/− mice displayed 1.65-fold greater plasma thymidine levels than did ENT1+/+ mice. Spleen tissue from ENT1+/+ and ENT1−/− mice displayed similar thymidine kinase 1 protein levels and significant concentrative nucleoside transporter 1 and 3 staining. Compared with A549-pSUPER-SC cells, A549-pSUPER-hENT1 cells displayed 0.45-fold hENT1 transcript levels and 0.68-fold 3H-FLT uptake. Compared with A549-pSUPER-SC xenograft tumors, A549-pSUPER-hENT1 xenograft tumors displayed 0.76-fold %ID/g values (ex vivo γ-counts) and 0.65-fold maximum standardized uptake values (PET image analysis) for 18F-FLT uptake at 1 h after tracer injection. Conclusion: Loss of ENT1 activity significantly affected 18F-FLT biodistribution in mice and 18F-FLT uptake in xenograft tumors, suggesting that nucleoside transporters are important mediators of 18F-FLT uptake in normal and transformed cells.


Small | 2016

Porphyrin Nanodroplets: Sub‐micrometer Ultrasound and Photoacoustic Contrast Imaging Agents

Robert J. Paproski; Alexander Forbrich; Elizabeth Huynh; Juan Chen; John D. Lewis; Gang Zheng; Roger J. Zemp

A novel class of all-organic nanoscale porphyrin nanodroplet agents is presented which is suitable for multimodality ultrasound and photoacoustic molecular imaging. Previous multimodality photoacoustic-ultrasound agents are either not organic, or not yet demonstrated to exhibit enhanced accumulation in leaky tumor vasculature, perhaps because of large diameters. In the current study, porphyrin nanodroplets are created with a mean diameter of 185 nm which is small enough to exhibit the enhanced permeability and retention effect. Porphyrin within the nanodroplet shell has strong optical absorption at 705 nm with an estimated molar extinction coefficient >5 × 10(9) m(-1) cm(-1) , allowing both ultrasound and photoacoustic contrast in the same nanoparticle using all organic materials. The potential of nanodroplets is that they may be phase-changed into microbubbles using high pressure ultrasound, providing ultrasound contrast with single-bubble sensitivity. Multispectral photoacoustic imaging allows visualization of nanodroplets when injected intratumorally in an HT1080 tumor in the chorioallantoic membrane of a chicken embryo. Intravital microscopy imaging of Hep3-GFP and HT1080-GFP tumors in chicken embryos determines that nanodroplets accumulated throughout or at the periphery of tumors, suggesting that porphyrin nanodroplets may be useful for enhancing the visualization of tumors with ultrasound and/or photoacoustic imaging.


Scientific Reports | 2015

Multi-wavelength photoacoustic imaging of inducible tyrosinase reporter gene expression in xenograft tumors

Robert J. Paproski; Andrew Heinmiller; Keith Wachowicz; Roger J. Zemp

Photoacoustic imaging is an emerging hybrid imaging technology capable of breaking through resolution limits of pure optical imaging technologies imposed by optical-scattering to provide fine-resolution optical contrast information in deep tissues. We demonstrate the ability of multi-wavelength photoacoustic imaging to estimate relative gene expression distributions using an inducible expression system and co-register images with hemoglobin oxygen saturation estimates and micro-ultrasound data. Tyrosinase, the rate-limiting enzyme in melanin production, is used as a reporter gene owing to its strong optical absorption and enzymatic amplification mechanism. Tetracycline-inducible melanin expression is turned on via doxycycline treatment in vivo. Serial multi-wavelength imaging reveals very low estimated melanin expression in tumors prior to doxycycline treatment or in tumors with no tyrosinase gene present, but strong signals after melanin induction in tumors tagged with the tyrosinase reporter. The combination of new inducible reporters and high-resolution photoacoustic and micro-ultrasound technology is poised to bring a new dimension to the study of gene expression in vivo.


Journal of Biomedical Optics | 2014

Detection of circulating tumor cells using targeted surface-enhanced Raman scattering nanoparticles and magnetic enrichment

Wei Shi; Robert J. Paproski; Ronald B. Moore; Roger J. Zemp

Abstract. While more than 90% of cancer deaths are due to metastases, our ability to detect circulating tumor cells (CTCs) is limited by low numbers of these cells in the blood and factors confounding specificity of detection. We propose a magnetic enrichment and detection technique for detecting CTCs with high specificity. We targeted both magnetic and surface-enhanced Raman scattering (SERS) nanoparticles to cancer cells. Only cells that are dual-labeled with both kinds of nanoparticles demonstrate an increasing SERS signal over time due to magnetic trapping.


Biochemical Journal | 2008

Mutation of Trp29 of human equilibrative nucleoside transporter 1 alters affinity for coronary vasodilator drugs and nucleoside selectivity

Robert J. Paproski; Frank Visser; Jing Zhang; Tracey Tackaberry; Vijaya L. Damaraju; Stephen A. Baldwin; James D. Young; Carol E. Cass

hENT1 (human equilibrative nucleoside transporter 1) is inhibited by nanomolar concentrations of various structurally distinct coronary vasodilator drugs, including dipyridamole, dilazep, draflazine, soluflazine and NBMPR (nitrobenzylmercaptopurine ribonucleoside). When a library of randomly mutated hENT1 cDNAs was screened using a yeast-based functional complementation assay for resistance to dilazep, a clone containing the W29G mutation was identified. Multiple sequence alignments revealed that this residue was highly conserved. Mutations at Trp29 were generated and tested for adenosine transport activity and inhibitor sensitivity. Trp29 mutations significantly reduced the apparent V(max) and/or increased the apparent K(m) values for adenosine transport. Trp29 mutations increased the IC50 values for hENT1 inhibition by dipyridamole, dilazep, NBMPR, soluflazine and draflazine. NBMPR and soluflazine displayed remarkably similar trends, with large aromatic substitutions at residue 29 resulting in the lowest IC50 values, suggesting that both drugs could interact via ring-stacking interactions with Trp29. The W29T mutant displayed a selective loss of pyrimidine nucleoside transport activity, which contrasts with the previously identified L442I mutant that displayed a selective loss of purine nucleoside transport. W29T, L442I and the double mutant W29T/L442I were characterized kinetically for nucleoside transport activity. A helical wheel projection of TM (transmembrane segment) 1 suggests that Trp29 is positioned close to Met33, implicated previously in nucleoside and inhibitor recognition, and that both residues line the permeant translocation pathway. The data also suggest that Trp29 forms part of, or lies close to, the binding sites for dipyridamole, dilazep, NBMPR, soluflazine and draflazine.


Light-Science & Applications | 2017

Non-interferometric photoacoustic remote sensing microscopy

Parsin Hajireza; Wei Shi; Kevan Bell; Robert J. Paproski; Roger Zemp

Elasto-optical refractive index modulation due to photoacoustic initial pressure transients produced significant reflection of a probe beam when the absorbing interface had an appreciable refractive index difference. This effect was harnessed in a new form of non-contact optical resolution photoacoustic microscopy called photoacoustic remote sensing microscopy. A non-interferometric system architecture with a low-coherence probe beam precludes detection of surface oscillations and other phase-modulation phenomenon. The probe beam was confocal with a scanned excitation beam to ensure detection of initial pressure-induced intensity reflections at the subsurface origin where pressures are largest. Phantom studies confirmed signal dependence on optical absorption, index contrast and excitation fluence. In vivo imaging of superficial microvasculature and melanoma tumors was demonstrated with ~2.7±0.5 μm lateral resolution.


PLOS ONE | 2013

Human Concentrative Nucleoside Transporter 3 Transfection with Ultrasound and Microbubbles in Nucleoside Transport Deficient HEK293 Cells Greatly Increases Gemcitabine Uptake

Robert J. Paproski; Sylvia Y. M. Yao; Nicole Favis; David O. Evans; James D. Young; Carol E. Cass; Roger J. Zemp

Gemcitabine is a hydrophilic clinical anticancer drug that requires nucleoside transporters to cross plasma membranes and enter cells. Pancreatic adenocarcinomas with low levels of nucleoside transporters are generally resistant to gemcitabine and are currently a clinical problem. We tested whether transfection of human concentrative nucleoside transporter 3 (hCNT3) using ultrasound and lipid stabilized microbubbles could increase gemcitabine uptake and sensitivity in HEK293 cells made nucleoside transport deficient by pharmacologic treatment with dilazep. To our knowledge, no published data exists regarding the utility of using hCNT3 as a therapeutic gene to reverse gemcitabine resistance. Our ultrasound transfection system - capable of transfection of cell cultures, mouse muscle and xenograft CEM/araC tumors - increased hCNT3 mRNA and 3H-gemcitabine uptake by >2,000– and 3,400–fold, respectively, in dilazep-treated HEK293 cells. Interestingly, HEK293 cells with both functional human equilibrative nucleoside transporters and hCNT3 displayed 5% of 3H-gemcitabine uptake observed in cells with only functional hCNT3, suggesting that equilibrative nucleoside transporters caused significant efflux of 3H-gemcitabine. Efflux assays confirmed that dilazep could inhibit the majority of 3H-gemcitabine efflux from HEK293 cells, suggesting that hENTs were responsible for the majority of efflux from the tested cells. Oocyte uptake transport assays were also performed and provided support for our hypothesis. Gemcitabine uptake and efflux assays were also performed on pancreatic cancer AsPC-1 and MIA PaCa-2 cells with similar results to that of HEK293 cells. Using the MTS proliferation assay, dilazep-treated HEK293 cells demonstrated 13-fold greater resistance to gemcitabine compared to dilazep-untreated HEK293 cells and this resistance could be reversed by transfection of hCNT3 cDNA. We propose that transfection of hCNT3 cDNA using ultrasound and microbubbles may be a method to reverse gemcitabine resistance in pancreatic tumors that have little nucleoside transport activity which are resistant to almost all current anticancer therapies.


Ultrasound in Medicine and Biology | 2014

RNA Biomarker Release with Ultrasound and Phase-Change Nanodroplets

Robert J. Paproski; Alexander Forbrich; Mary Hitt; Roger J. Zemp

Microbubbles driven by ultrasound are capable of permeabilizing cell membranes and allowing biomarkers or therapeutics to exit from or enter cancer cells, respectively. Unfortunately, the relatively large size of microbubbles prevents extravasation. Lipid-based perfluorobutane microbubbles can be made seven-fold smaller by pressurization, creating 430-nm nanodroplets. The present study compares microbubbles and nanodroplets with respect to their ability to enhance miR-21 and mammaglobin mRNA release from cultured ZR-75-1 cells. Mammaglobin mRNA and miR-21 release increased with escalating concentrations of nanodroplets up to, respectively, 25- and 42-fold with 2% nanodroplets (v/v), compared with pre-ultrasound levels, whereas cell viability decreased to 62.4%. Sonication of ZR-75-1 cells incubated with microbubbles or nanodroplets caused relatively similar levels of cell death and miR-21 release, suggesting that nanodroplets are similar to microbubbles in enhancing cell permeability, but may be more advantageous because of their smaller size, which may allow extravasation through leaky tumor vasculature.

Collaboration


Dive into the Robert J. Paproski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mary Hitt

University of Alberta

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Li

University of Alberta

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Shi

University of Alberta

View shared research outputs
Researchain Logo
Decentralizing Knowledge