Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Jedicke is active.

Publication


Featured researches published by Robert Jedicke.


The Astrophysical Journal | 2011

NEOWISE Observations of Near-Earth Objects: Preliminary Results

Amy K. Mainzer; T. Grav; James Monie Bauer; Joseph R. Masiero; Robert S. McMillan; Roc Michael Cutri; R. Walker; E. L. Wright; Peter R. M. Eisenhardt; D. J. Tholen; T. B. Spahr; Robert Jedicke; Larry Denneau; E. DeBaun; D. Elsbury; T. Gautier; S. Gomillion; E. Hand; W. Mo; J. Watkins; Ashlee Wilkins; Ginger L. Bryngelson; A. Del Pino Molina; S. Desai; M. Gómez Camus; S. L. Hidalgo; I. S. Konstantopoulos; Jeffrey A. Larsen; C. Maleszewski; M. Malkan

With the NEOWISE portion of the Wide-field Infrared Survey Explorer (WISE) project, we have carried out a highly uniform survey of the near-Earth object (NEO) population at thermal infrared wavelengths ranging from 3 to 22 μm, allowing us to refine estimates of their numbers, sizes, and albedos. The NEOWISE survey detected NEOs the same way whether they were previously known or not, subject to the availability of ground-based follow-up observations, resulting in the discovery of more than 130 new NEOs. The surveys uniform sensitivity, observing cadence, and image quality have permitted extrapolation of the 428 near-Earth asteroids (NEAs) detected by NEOWISE during the fully cryogenic portion of the WISE mission to the larger population. We find that there are 981 ± 19 NEAs larger than 1 km and 20,500 ± 3000 NEAs larger than 100 m. We show that the Spaceguard goal of detecting 90% of all 1 km NEAs has been met, and that the cumulative size distribution is best represented by a broken power law with a slope of 1.32 ± 0.14 below 1.5 km. This power-law slope produces ~13,200 ± 1900 NEAs with D > 140 m. Although previous studies predict another break in the cumulative size distribution below D ~ 50-100 m, resulting in an increase in the number of NEOs in this size range and smaller, we did not detect enough objects to comment on this increase. The overall number for the NEA population between 100 and 1000 m is lower than previous estimates. The numbers of near-Earth comets and potentially hazardous NEOs will be the subject of future work.


Icarus | 1998

The Orbital and Absolute Magnitude Distributions of Main Belt Asteroids

Robert Jedicke; T. S. Metcalfe

We have developed a model-independent analytical method for debiasing the four-dimensional (a,e,i,H) distribution obtained in any asteroid observation program and have applied the technique to results obtained with the 0.9 m Spacewatch telescope. From 1992 to 1995 Spacewatch observed ∼3740 deg2near the ecliptic and made observations of more than 60,000 asteroids to a limiting magnitude of V ∼ 21. The debiased semimajor axis and inclination distributions of main belt asteroids in this sample with 11.5 ≤H< 16 match the distributions of the known asteroids withH< 11.5. The absolute magnitude distribution was studied in the range 8 <H< 17.5. We have found that the set of known asteroids is complete to about absolute magnitudes 12.75, 12.25, and 11.25 in the inner, middle, and outer regions of the belt, respectively. The number distribution as a function of absolute magnitude cannot be represented by a single power law (10αH) in any region. We were able to define broad ranges inHin each part of the belt where α was nearly constant. Within these ranges ofHthe slope does not correspond to the value of 0.5 expected for an equilibrium cascade in self-similar collisions (Dohnanyi 1971). The value of α varies with absolute magnitude and shows a “kink” in all regions of the belt forH∼ 13. This absolute magnitude corresponds to a diameter ranging from about 8.5 to 12.5 km depending on the albedo or region of the belt.


The Astrophysical Journal | 2014

Rapidly-Evolving and Luminous Transients from Pan-STARRS1

Maria Rebecca Drout; Ryan Chornock; Alicia M. Soderberg; Nathan Edward Sanders; R. McKinnon; Armin Rest; Ryan J. Foley; D. Milisavljevic; Raffaella Margutti; Edo Berger; Michael L. Calkins; William. Fong; S. Gezari; M. Huber; E. Kankare; Robert P. Kirshner; C. Leibler; R. Lunnan; Seppo Mattila; G. H. Marion; Gautham S. Narayan; A. G. Riess; Kathy Roth; D. Scolnic; S. J. Smartt; John L. Tonry; W. S. Burgett; K. C. Chambers; K. W. Hodapp; Robert Jedicke

In the past decade, several rapidly evolving transients have been discovered whose timescales and luminosities are not easily explained by traditional supernovae (SNe) models. The sample size of these objects has remained small due, at least in part, to the challenges of detecting short timescale transients with traditional survey cadences. Here we present the results from a search within the Pan-STARRS1 Medium Deep Survey (PS1-MDS) for rapidly evolving and luminous transients. We identify 10 new transients with a time above half-maximum (t 1/2) of less than 12 days and –16.5 > M > –20 mag. This increases the number of known events in this region of SN phase space by roughly a factor of three. The median redshift of the PS1-MDS sample is z = 0.275 and they all exploded in star-forming galaxies. In general, the transients possess faster rise than decline timescale and blue colors at maximum light (g P1 – r P1 lsim –0.2). Best-fit blackbodies reveal photospheric temperatures/radii that expand/cool with time and explosion spectra taken near maximum light are dominated by a blue continuum, consistent with a hot, optically thick, ejecta. We find it difficult to reconcile the short timescale, high peak luminosity (L > 1043 erg s–1), and lack of UV line blanketing observed in many of these transients with an explosion powered mainly by the radioactive decay of 56Ni. Rather, we find that many are consistent with either (1) cooling envelope emission from the explosion of a star with a low-mass extended envelope that ejected very little (<0.03 M ☉) radioactive material, or (2) a shock breakout within a dense, optically thick, wind surrounding the progenitor star. After calculating the detection efficiency for objects with rapid timescales in the PS1-MDS we find a volumetric rate of 4800-8000 events yr–1 Gpc–3 (4%-7% of the core-collapse SN rate at z = 0.2).


Nature | 2016

Super-catastrophic disruption of asteroids at small perihelion distances

Mikael Granvik; Alessandro Morbidelli; Robert Jedicke; Bryce Bolin; William F. Bottke; Edward C. Beshore; David Vokrouhlický; Marco Delbo; Patrick Michel

Most near-Earth objects came from the asteroid belt and drifted via non-gravitational thermal forces into resonant escape routes that, in turn, pushed them onto planet-crossing orbits. Models predict that numerous asteroids should be found on orbits that closely approach the Sun, but few have been seen. In addition, even though the near-Earth-object population in general is an even mix of low-albedo (less than ten per cent of incident radiation is reflected) and high-albedo (more than ten per cent of incident radiation is reflected) asteroids, the characterized asteroids near the Sun typically have high albedos. Here we report a quantitative comparison of actual asteroid detections and a near-Earth-object model (which accounts for observational selection effects). We conclude that the deficit of low-albedo objects near the Sun arises from the super-catastrophic breakup (that is, almost complete disintegration) of a substantial fraction of asteroids when they achieve perihelion distances of a few tens of solar radii. The distance at which destruction occurs is greater for smaller asteroids, and their temperatures during perihelion passages are too low for evaporation to explain their disappearance. Although both bright and dark (high- and low-albedo) asteroids eventually break up, we find that low-albedo asteroids are more likely to be destroyed farther from the Sun, which explains the apparent excess of high-albedo near-Earth objects and suggests that low-albedo asteroids break up more easily as a result of thermal effects.


Icarus | 2008

The Distribution of Basaltic Asteroids in the Main Belt

Nicholas A. Moskovitz; Eric Gaidos; Ronald Adrey Fevig; Mark Willman; Zeljko Ivezic; David Nesvorny; Robert Jedicke

Abstract We present the observational results of a survey designed to target and detect asteroids whose photometric colors are similar to those of Vesta family members and thus may be considered as candidates for having a basaltic composition. Fifty basaltic candidates were selected with orbital elements that lie outside of the Vesta dynamical family. Optical and near-infrared spectra were used to assign a taxonomic type to 11 of the 50 candidates. Ten of these were spectroscopically confirmed as V-type asteroids, suggesting that most of the candidates are basaltic and can be used to constrain the distribution of basaltic material in the Main Belt. Using our catalog of V-type candidates and the success rate of the survey, we calculate unbiased size-frequency and semi-major axis distributions of V-type asteroids. These distributions, in addition to an estimate for the total mass of basaltic material, suggest that Vesta was the predominant contributor to the basaltic asteroid inventory of the Main Belt, however scattered planetesimals from the inner Solar System ( a 2.0 AU ) and other partially/fully differentiated bodies likely contributed to this inventory. In particular, we infer the presence of basaltic fragments in the vicinity of Asteroid 15 Eunomia, which may be derived from a differentiated parent body in the middle Main Belt ( 2.5 a 2.8 ). We find no asteroidal evidence for a large number of previously undiscovered basaltic asteroids, which agrees with previous theories suggesting that basaltic fragments from the ∼100 differentiated parent bodies represented in meteorite collections have been “battered to bits” [Burbine, T.H., Meibom, A., Binzel, R.P., 1996. Meteorit. Planet. Sci. 31, 607–620].


Nature | 2004

An age–colour relationship for main-belt S-complex asteroids

Robert Jedicke; David Nesvorný; Robert J. Whiteley; Željko Ivezić; Mario Juric

Asteroid collisions in the main belt eject fragments that may eventually land on Earth as meteorites. It has therefore been a long-standing puzzle in planetary science that laboratory spectra of the most populous class of meteorite (ordinary chondrites, OC) do not match the remotely observed surface spectra of their presumed (S-complex) asteroidal parent bodies. One of the proposed solutions to this perplexing observation is that ‘space weathering’ modifies the exposed planetary surfaces over time through a variety of processes (such as solar and cosmic ray bombardment, micro-meteorite bombardment, and so on). Space weathering has been observed on lunar samples, in Earth-based laboratory experiments, and there is good evidence from spacecraft data that the process is active on asteroid surfaces. Here, we present a measurement of the rate of space weathering on S-complex main-belt asteroids using a relationship between the ages of asteroid families and their colours. Extrapolating this age–colour relationship to very young ages yields a good match to the colour of freshly cut OC meteorite samples, lending strong support to a genetic relationship between them and the S-complex asteroids.


Publications of the Astronomical Society of the Pacific | 2013

The Pan-STARRS Moving Object Processing System

Larry Denneau; Robert Jedicke; T. Grav; Mikael Granvik; Jeremy Kubica; Andrea Milani; Peter Vereš; R. J. Wainscoat; Daniel Chang; Francesco Pierfederici; Nick Kaiser; K. C. Chambers; J. N. Heasley; E. A. Magnier; Paul A. Price; Jonathan Myers; Jan Kleyna; Henry H. Hsieh; Davide Farnocchia; C. Waters; W. H. Sweeney; Denver Green; Bryce Bolin; W. S. Burgett; Jeffrey S. Morgan; John L. Tonry; K. W. Hodapp; Serge Chastel; S. R. Chesley; A. Fitzsimmons

ABSTRACT.We describe the Pan-STARRS Moving Object Processing System (MOPS), a modern software package that produces automatic asteroid discoveries and identifications from catalogs of transient detections from next-generation astronomical survey telescopes. MOPS achieves >99.5%>99.5% efficiency in producing orbits from a synthetic but realistic population of asteroids whose measurements were simulated for a Pan-STARRS4-class telescope. Additionally, using a nonphysical grid population, we demonstrate that MOPS can detect populations of currently unknown objects such as interstellar asteroids. MOPS has been adapted successfully to the prototype Pan-STARRS1 telescope despite differences in expected false detection rates, fill-factor loss, and relatively sparse observing cadence compared to a hypothetical Pan-STARRS4 telescope and survey. MOPS remains highly efficient at detecting objects but drops to 80% efficiency at producing orbits. This loss is primarily due to configurable MOPS processing limits that a...


The Astrophysical Journal | 2012

Characterizing Subpopulations within the near-Earth Objects with NEOWISE: Preliminary Results

A. Mainzer; T. Grav; Joseph R. Masiero; James Monie Bauer; Robert S. McMillan; Jon D. Giorgini; T. B. Spahr; Roc Michael Cutri; David J. Tholen; Robert Jedicke; R. Walker; E. L. Wright; C. R. Nugent

We present the preliminary results of an analysis of the sub-populations within the near-Earth asteroids, including the Atens, Apollos, Amors, and those that are considered potentially hazardous using data from the Wide-field Infrared Survey Explorer (WISE). In order to extrapolate the sample of objects detected by WISE to the greater population, we determined the survey biases for asteroids detected by the projects automated moving object processing system (known as NEOWISE) as a function of diameter, visible albedo, and orbital elements. Using this technique, we are able to place constraints on the number of potentially hazardous asteroids larger than 100 m and find that there are ~4700 ± 1450 such objects. As expected, the Atens, Apollos, and Amors are revealed by WISE to have somewhat different albedo distributions, with the Atens being brighter than the Amors. The cumulative size distributions of the various near-Earth object (NEO) subgroups vary slightly between 100 m and 1 km. A comparison of the observed orbital elements of the various sub-populations of the NEOs with the current best model is shown.


Physical Review Letters | 1994

Enhanced leading production of D+- and D*+- in 250-GeV pi+- - nucleon interactions

G.A. Alves; D. R. Green; C. Darling; Roger L. Dixon; M.E. Streetman; M. Souza; D. Passmore; A. Napier; Z. Wu; T. Bernard; A. C. dos Reis; J. Astorga; L. Lueking; Robert Jedicke; W. J. Spalding; A. Rafatian; S. Amato; J. C. Anjos; D. J. Summers; S. Kwan; A. Wallace; Stephen B. Bracker; J. A. Appel; S. F. Takach; A. Santoro; R. H. Milburn; L. Cremaldi; D. Errede; J. M. De Miranda; P. E. Karchin

A leading charm meson is one with longitudinal momentum fraction, [ital x][sub [ital F]][gt]0, whose light quark (or antiquark) is of the same type as one of the quarks in the beam particles. We report on the production asymmetry, [ital A]=[[sigma](leading[minus][sigma](nonleading)]/[[sigma](leading)+[sigma](nonleading)] as a function of [ital x][sub [ital F]]. The data consist of 1500 fully reconstructed [ital D][sup [plus minus]] and [ital D][sup *[plus minus]] decays in Fermilab experiment E 769. We find a significant asymmetry for the production of charm quarks is not expected in perturbative quantum chromodynamics.


Monthly Notices of the Royal Astronomical Society | 2015

Selecting superluminous supernovae in faint galaxies from the first year of the Pan-STARRS1 Medium Deep Survey

M. McCrum; S. J. Smartt; Armin Rest; K. W. Smith; R. Kotak; Steven A. Rodney; D. R. Young; Ryan Chornock; Edo Berger; Ryan J. Foley; M. Fraser; D. Wright; D. Scolnic; John L. Tonry; Yuji Urata; Kuiyun Huang; Andrea Pastorello; M. T. Botticella; S. Valenti; Seppo Mattila; E. Kankare; Daniel J. Farrow; M. Huber; Christopher W. Stubbs; Robert P. Kirshner; Fabio Bresolin; W. S. Burgett; K. C. Chambers; Peter W. Draper; H. Flewelling

The Pan-STARRS1 (PS1) survey has obtained imaging in 5 bands (grizyP1) over 10 Medium Deep Survey (MDS) fields covering a total of 70 square degrees . This paper describes the search for apparently hostless supernovae (SNe) within the first year of PS1 MDS data with an aim of discovering superluminous supernovae (SLSNe). A total of 249 hostless transients were discovered down to a limiting magnitude of MAB ∼ 23.5, of which 76 were classified as type Ia SNe. There were 57 SNe with complete light curves that are likely core-collapse SNe (CCSNe) or type Ic SLSNe and 12 of these have had spectra taken. Of these 12 hostless, non-type Ia SNe, 7 were SLSNe of type Ic at redshifts between 0.5-1.4. This illustrates that the discovery rate of type Ic SLSNe can be maximised by concentrating on hostless transients and removing normal SNe Ia. We present data for two possible SLSNe; PS1-10pm (z = 1.206) and PS1-10ahf (z = 1.1), and estimate the rate of type Ic SLSNe to be between 3 +3

Collaboration


Dive into the Robert Jedicke's collaboration.

Researchain Logo
Decentralizing Knowledge