Robert John
Indian Institute of Science Education and Research, Kolkata
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert John.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Robert John; James W. Dalling; Kyle E. Harms; Joseph B. Yavitt; Robert F. Stallard; Matthew Mirabello; Stephen P. Hubbell; Renato Valencia; Hugo Navarrete; Martha Isabel Vallejo; Robin B. Foster
The importance of niche vs. neutral assembly mechanisms in structuring tropical tree communities remains an important unsettled question in community ecology [Bell G (2005) Ecology 86:1757–1770]. There is ample evidence that species distributions are determined by soils and habitat factors at landscape (<104 km2) and regional scales. At local scales (<1 km2), however, habitat factors and species distributions show comparable spatial aggregation, making it difficult to disentangle the importance of niche and dispersal processes. In this article, we test soil resource-based niche assembly at a local scale, using species and soil nutrient distributions obtained at high spatial resolution in three diverse neotropical forest plots in Colombia (La Planada), Ecuador (Yasuni), and Panama (Barro Colorado Island). Using spatial distribution maps of >0.5 million individual trees of 1,400 species and 10 essential plant nutrients, we used Monte Carlo simulations of species distributions to test plant–soil associations against null expectations based on dispersal assembly. We found that the spatial distributions of 36–51% of tree species at these sites show strong associations to soil nutrient distributions. Neutral dispersal assembly cannot account for these plant–soil associations or the observed niche breadths of these species. These results indicate that belowground resource availability plays an important role in the assembly of tropical tree communities at local scales and provide the basis for future investigations on the mechanisms of resource competition among tropical tree species.
Proceedings of the Royal Society B: Biological Sciences | 2012
Claire A. Baldeck; Kyle E. Harms; Joseph B. Yavitt; Robert John; Benjamin L. Turner; Renato Valencia; Hugo Navarrete; Stuart J. Davies; George B. Chuyong; David Kenfack; Duncan W. Thomas; Sumedha Madawala; Nimal Gunatilleke; Savitri Gunatilleke; Sarayudh Bunyavejchewin; Somboon Kiratiprayoon; Adzmi Yaacob; M. N. N. Supardi; James W. Dalling
Both habitat filtering and dispersal limitation influence the compositional structure of forest communities, but previous studies examining the relative contributions of these processes with variation partitioning have primarily used topography to represent the influence of the environment. Here, we bring together data on both topography and soil resource variation within eight large (24–50 ha) tropical forest plots, and use variation partitioning to decompose community compositional variation into fractions explained by spatial, soil resource and topographic variables. Both soil resources and topography account for significant and approximately equal variation in tree community composition (9–34% and 5–29%, respectively), and all environmental variables together explain 13–39% of compositional variation within a plot. A large fraction of variation (19–37%) was spatially structured, yet unexplained by the environment, suggesting an important role for dispersal processes and unmeasured environmental variables. For the majority of sites, adding soil resource variables to topography nearly doubled the inferred role of habitat filtering, accounting for variation in compositional structure that would previously have been attributable to dispersal. Our results, illustrated using a new graphical depiction of community structure within these plots, demonstrate the importance of small-scale environmental variation in shaping local community structure in diverse tropical forests around the globe.
Global Change Biology | 2014
Jagdish Krishnaswamy; Robert John; Shijo Joseph
Global climate change has emerged as a major driver of ecosystem change. Here, we present evidence for globally consistent responses in vegetation dynamics to recent climate change in the worlds mountain ecosystems located in the pan-tropical belt (30°N-30°S). We analyzed decadal-scale trends and seasonal cycles of vegetation greenness using monthly time series of satellite greenness (Normalized Difference Vegetation Index) and climate data for the period 1982-2006 for 47 mountain protected areas in five biodiversity hotspots. The time series of annual maximum NDVI for each of five continental regions shows mild greening trends followed by reversal to stronger browning trends around the mid-1990s. During the same period we found increasing trends in temperature but only marginal change in precipitation. The amplitude of the annual greenness cycle increased with time, and was strongly associated with the observed increase in temperature amplitude. We applied dynamic models with time-dependent regression parameters to study the time evolution of NDVI-climate relationships. We found that the relationship between vegetation greenness and temperature weakened over time or was negative. Such loss of positive temperature sensitivity has been documented in other regions as a response to temperature-induced moisture stress. We also used dynamic models to extract the trends in vegetation greenness that remain after accounting for the effects of temperature and precipitation. We found residual browning and greening trends in all regions, which indicate that factors other than temperature and precipitation also influence vegetation dynamics. Browning rates became progressively weaker with increase in elevation as indicated by quantile regression models. Tropical mountain vegetation is considered sensitive to climatic changes, so these consistent vegetation responses across widespread regions indicate persistent global-scale effects of climate warming and associated moisture stresses.
Proceedings of the Royal Society of London B: Biological Sciences | 2013
Claire A. Baldeck; Kyle E. Harms; Joseph B. Yavitt; Robert John; Benjamin L. Turner; Renato Valencia; Hugo Navarrete; Sarayudh Bunyavejchewin; Somboon Kiratiprayoon; Adzmi Yaacob; M. N. N. Supardi; Stuart J. Davies; Stephen P. Hubbell; G. Chuyong; David Kenfack; Duncan W. Thomas; James W. Dalling
Tropical tree communities are shaped by local-scale habitat heterogeneity in the form of topographic and edaphic variation, but the life-history stage at which habitat associations develop remains poorly understood. This is due, in part, to the fact that previous studies have not accounted for the widely disparate sample sizes (number of stems) that result when trees are divided into size classes. We demonstrate that the observed habitat structuring of a community is directly related to the number of individuals in the community. We then compare the relative importance of habitat heterogeneity to tree community structure for saplings, juveniles and adult trees within seven large (24–50 ha) tropical forest dynamics plots while controlling for sample size. Changes in habitat structuring through tree life stages were small and inconsistent among life stages and study sites. Where found, these differences were an order of magnitude smaller than the findings of previous studies that did not control for sample size. Moreover, community structure and composition were very similar among tree sub-communities of different life stages. We conclude that the structure of these tropical tree communities is established by the time trees are large enough to be included in the census (1 cm diameter at breast height), which indicates that habitat filtering occurs during earlier life stages.
Journal of Vegetation Science | 2002
Robert John; H. S. Dattaraja; Hebbalalu S. Suresh; Raman Sukumar
Abstract Density‐dependence in tree population dynamics has seldom been examined in dry tropical forests. Using longterm data from a large permanent plot, this study examined 16 common species in a dry tropical forest in southern India for density‐dependence. Employing quadrat‐based analyses, correlations of mortality, recruitment and population change with tree densities were examined. Mortality in 1‐10 cm diameter trees was largely negatively correlated with conspecific density, whereas mortality in > 10 cm diameter trees was positively correlated. Mortality was, however, largely unaffected by the basal area and abundance of heterospecific trees. Recruitment was poor in most species, but in Lagerstroemia microcarpa (Lythraceae ), Tectona grandis (Verbenaceae ) and Cassia fistula (Fabaceae ), species that recruited well, strong negative correlations of recruitment with conspecific basal area and abundance were found. In a few other species that could be tested, recruitment was again negatively correlated with conspecific density. In Lagerstroemia, recruitment was positively correlated with the basal area and abundance of heterospecific trees, but these correlations were non‐significant in other species. Similarly, although the rates of population change were negatively correlated with conspecific density they were positive when dry‐season ground fires occurred in the plot. Thus, the observed positive density‐dependence in large‐tree mortality and the negative density‐dependence in recruitment in many species were such that could potentially regulate tree populations. However, repeated fires influenced density‐dependence in the rates of population change in a way that could promote a few common species in the tree community.
PLOS ONE | 2012
Hui Zhang; Robert John; Zechen Peng; Jianli Yuan; Chengjin Chu; Guozhen Du; Shurong Zhou
The relationship between species richness and evenness across communities remains an unsettled issue in ecology from both theoretical and empirical perspectives. As a result, we do not know the mechanisms that could generate a relationship between species richness and evenness, and how this responds to spatial scale. Here we examine the relationship between species richness(S) and evenness (Pielou’s J′ evenness) using a chronosequence of successional sub-alpine meadow communities in the eastern Qinghai-Tibetan Plateau. These meadows range from natural community (never farmed), to those that have been protected from agricultural exploitation for periods ranging from 1 to 10 years. A total of 30 sampling quadrats with size of 0.5 m×0.5 m were laid out along two transects at each meadow. Using correlation analyses we found a consistent negative correlation between S and J′ in these communities along the successional gradient at the sampling scale of 0.5 m×0.5 m. We also explored the relationship between S and J′ at different sampling scales (from 0.5 m×0.5 m to10 m×10 m) using properly measured ramet-mapped data of a10 m×10 m quadrat in the natural community. We found that S was negatively corrected with J′ at the scales of 0.5 m×0.5 m to 2 m×2 m, but such a relationships disappeared at relative larger scales (≥2 m×4 m). When fitting different species abundance models combined with trait-specific methods, we found that niche preemption may be the determining mechanism of species evenness along the succession gradient. Considering all results together, we can conclude that such niche differentiation and spatial scale effects may help to explain the maintenance of high species richness in sub-alpine meadow communities.
Ecology Letters | 2015
Rong-Hua Li; Shidan Zhu; Han Y. H. Chen; Robert John; Guoyi Zhou; Deqiang Zhang; Qianmei Zhang; Qing Ye
Significant changes in the composition of tree species have been observed in various forests worldwide. We hypothesised that these changes might result from variable sensitivities of species to global change, and species sensitivities might be quantified, using functional traits. Employing long-term (1978-2010) species abundance data of 48 tree species from a permanent subtropical forest plot, where multiple global change factors have been observed, including soil drying, we examined the relationships between temporal trends in abundance and suits of functional traits. We found that species with high photosynthesis rates, leaf phosphorus and nitrogen concentrations, specific leaf area, hydraulic conductivity, turgor loss point and predawn leaf water potential had increased in abundance, while species with opposite trait patterns had decreased. Our results demonstrate that functional traits underlie tree species abundance dynamics in response to drought stress, thus linking traits to compositional shifts in this subtropical forest under global changes.
Archive | 2005
María Uriarte; Stephen P. Hubbell; Robert John; Richard Condit; Charles D. Canham
Introduction In 1980 S. P. Hubbell and R. B. Foster began a long-term, large-scale study of tropical forest dynamics on Barro Colorado Island (BCI), Panama. The objective of the study was to test competing hypotheses about the maintenance of high tree species richness in the BCI forest, and in tropical moist forests more generally. Hubbell and Foster established a 50-ha permanent plot on the summit plateau of BCI, within which all free-standing woody plants with a stem diameter at breast height (DBH) of a centimetre or larger were tagged, measured, mapped and identified by 1982. Subsequent complete censuses of the BCI plot have been conducted from 1985 to 2000 at 5-year intervals. In setting up the BCI plot, Hubbell and Foster (1983) reasoned that whatever diversity-maintaining mechanisms were important, they would have to operate in a spatially dependent manner in communities of sessile plants such as the BCI tree community, which meant that the trees had to be mapped. A decade earlier, Janzen (1970) and Connell (1971) had independently proposed a spatially explicit ‘enemies hypothesis’, now known as the Janzen–Connell hypothesis. They hypothesized that host-specific seed and seedling predators were responsible for maintaining tropical tree diversity by causing dependence on density and frequency (rare species advantage), through an interaction between seed dispersal and densitydependent seed predation. In 1980, there were essentially just two principal tropical forest diversity theories to test: the enemies hypothesis and its variants, and the ‘intermediate disturbance’ hypothesis (Connell 1977) and its variants that invoked a role for disturbances associated with opening, growth and closure of light gaps (e.g.
Journal of Vegetation Science | 2017
Arundhati Das; Robert John; Madhur Anand
Aims The study of naturally discontinuous forest systems could help further our understanding of the relative roles of abiotic factors and spatial connectivity in influencing species turnover and plant metacommunity structure, compared to continuous forest formations, where local communities are often arbitrarily defined and where ‘mass effects’ and source–sink dynamics tend to confound the roles of dispersal and environment. Here we studied a tropical montane landscape where old-growth evergreen forest occurs as patchy formations in a matrix of natural grasslands, to test the influence of environment and connectivity on species turnover and woody plant metacommunity structure. Location Western and southern regions of the Upper Nilgiri Plateau, Western Ghats, southern India. Methods We sampled 85 vegetation plots located across a 600-km2 landscape, assembled environmental data, constructed contrasting spatial connectivity models, including models for the effects of topography on structural connectivity, and used RDA-based variation partitioning to assess the relative influence of environment and space on woody plant metacommunity structure. Results Considering several environmental and multi-scale spatial predictors, we could explain half of the variation in plant community structure. Environmental and habitat factors such as precipitation, temperature seasonality, elevation, fragment size and landscape context play a dominant role, explaining approximately 40% of variation. Spatial predictors based on Euclidean distance performed better than those that accounted for topographic resistance. Spatial predictors accounted for only 9% of the variation in plant metacommunity structure. Conclusion Our results support the species sorting paradigm of metacommunity structure, as abiotic effects and biotic interactions play dominant roles in influencing community structure and species turnover in these old-growth forests, with a comparatively small influence of spatial connectivity. Effective management of woody species diversity would therefore require conservation of these forests across the range of environmental conditions under which they occur.
Oecologia | 2018
Hui Zhang; Robert John; Shi-Dan Zhu; Hui Liu; Qiuyuan Xu; Wei Qi; Kun Liu; Han Y. H. Chen; Qing Ye
Although trait-based processes of community assembly during secondary succession invokes multiple factors that ultimately determine the presence or absence of a species, little is known regarding the impacts of functional traits on species abundance in successional plant communities. Here in species-rich subalpine secondary successional meadows of the Qinghai–Tibetan Plateau, we measured photosynthesis rate and leaf proline content that are related to plant growth and abiotic stress resistance, respectively, and seed germination rate that is closely correlated with plant germination strategy to test their influence on species abundance during succession. We used a linear mixed effects model framework to examine the shifts in trait–abundance relationships and the correlations among these three traits in successional communities. We observed significant shifts in trait–abundance relationships during succession, e.g., abundant species in early-successional meadows exhibited relatively high photosynthesis rates and leaf proline content, but showed low seed germination rates, whereas the converse were true in late successional communities. However, the correlations among the three traits were insignificant in most meadow communities. Our results show that functional traits associated with plant growth, stress resistance, and reproduction impose strong influence on species abundance during secondary subalpine meadow succession in the Qinghai–Tibetan Plateau.