Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert K. Kuester is active.

Publication


Featured researches published by Robert K. Kuester.


Toxicology | 1997

Suppression of Kupffer cell function prevents cadmium induced hepatocellular necrosis in the male Sprague-Dawley rat.

John-Michael Sauer; Michael P. Waalkes; Stephen B. Hooser; Robert K. Kuester; Charlene A. McQueen; I. Glenn Sipes

Exposure of humans to toxic metals and metalloids is a major environmental problem. Many metals, such as cadmium, can be hepatotoxic. However, the mechanisms by which metals cause acute hepatic injury are in many cases unknown. Previous reports suggest a major role for inflammation in acute cadmium induced hepatotoxicity. In initial experiments we found that a non-hepatotoxic dose of cadmium chloride (CdCl2; 2.0 mg/kg, i.v.) markedly increased the clearance rate of colloidal carbon from the blood, which is indicative of enhanced phagocytic activity by Kupffer cells (resident hepatic macrophages). Thus. the objective these studies was to determine the involvement of Kupffer cells in cadmium induced liver injury by inhibiting their function with gadolinium chloride (GdCl3). Male Sprague-Dawley rats were administered GdCl3 (10 mg/kg, i.v.) followed 24 h later by a single dose of CdCl2 (3.0 and 4.0 mg/kg, i.v.). Twenty four hours after CdCl2 administration animals were killed and the degree of liver toxicity was assessed using plasma alanine aminotransferase (ALT), as well as light microscopy. Cadmium chloride administration produced multifocal hepatocellular necrosis and increased plasma ALT activity. Pretreatment with GdCl3 significantly reduced both the morphological changes and hepatic ALT release caused by CdCl2. However, the protection was specific to the liver, and did not alter CdCl2 induced testicular injury, as determined by histopathological damage. In many cases, the inducible cadmium-binding protein, metallothionein (MT) is often an essential aspect of the acquisition of cadmium tolerance in the liver. Although cadmium caused a dramatic induction of hepatic MT (32-fold), GdCl3 caused only a minor increase (2-fold). Combined CdCl2 and GdCl3 treatment did not induce levels to an extent greater than CdCl2 alone. As expected, GdCl3 also caused a slight increase in the amount of cadmium associated with the liver. In cultured hepatocytes isolated from GdCl3 pretreated rats, CdCl2 induced cytotoxicity was not significantly altered compared to control hepatocytes, indicating that the mechanism of tolerance required the presence of other cell types. Thus, GdCl3 attenuation of CdCl2 induced hepatotoxicity does not appear to be caused by increased tissue MT content or a decreased susceptibility of hepatocytes to cadmium. From these data, we concluded that tolerance to cadmium induced hepatotoxicity involves the inhibition of Kupffer cell function which results in a decreased inflammatory response and an altered progression of hepatic injury. These data further indicate that Kupffer cell function is critical to cadmium induced hepatocellular necrosis.


Toxicon | 2002

Nordihydroguaiaretic acid: hepatotoxicity and detoxification in the mouse

Joshua D. Lambert; Dedun Zhao; Ross O. Meyers; Robert K. Kuester; Barbara N. Timmermann; Robert T. Dorr

Larrea tridentata (Moc & Sess) Cov. (Zygophyllaceae) is an ethnobotanically important plant found in the American Southwest and northern Mexico. Although numerous beneficial effects have been attributed to this plant, several case reports have demonstrated high doses of Larrea-containing herbals induce hepatotoxicity and nephrotoxicity in humans. Nordihydriguaiaretic acid (NDGA) is a lignan found in high amounts (up to 10% by dry weight) in the leaves and twigs of L. tridentata. Previously, NDGA has been shown to induce cystic nephropathy in the rat, however, no reports have been made concerning this compounds hepatotoxic potential. Here, we report that intraperitoneal administration of NDGA is lethal in the mouse (LD(50)=75 mg/kg). Administration is associated with a time and dose-dependent increase in serum alanine aminotransferase levels, which suggest liver damage. Indeed, freshly isolated mouse hepatocytes are more sensitive to NDGA than human melanoma cells. Furthermore, we have identified glucuronidation as a potential detoxification mechanism for NDGA. Both mono and diglucuronide conjugates of NDGA are formed after intravenous dosing. The monoglucuronide is also formed after incubation of NDGA with human hepatic microsomes; suggesting that glucuronide conjugation is important in the metabolism of NDGA by humans. In summary, this report indicates that NDGA may contribute to the hepatotoxicity of L. tridentata and provides preliminary information on NDGA metabolism.


Toxicology | 1997

Gadolinium chloride reduces cytochrome P450: relevance to chemical-induced hepatotoxicity.

Drew A. Badger; Robert K. Kuester; John-Michael Sauer; I.G. Sipes

The Kupffer cell inhibitor, gadolinium chloride (GdCl3), protects the liver from a number of toxicants that require biotransformation to elicit toxicity (i.e. 1,2-dichlorobenzene and CCl4), as well as compounds that do not (i.e. cadmium chloride and beryllium sulfate). The mechanism of this protection is thought to result from reduced secretion of inflammatory and cytotoxic products from Kupffer cells (KC). However, since other lanthanides have been shown to decrease cytochrome P450 (P450) activity, the following studies were designed to determine if GdCl3 pretreatment alters hepatic P450 levels or activity. The toxicological relevance of GdCl3-mediated alterations in P450 activity was also estimated by determining the effect of GdCl3 pretreatment on the susceptibility of primary cultured hepatocytes to CCl4 and cadmium chloride (CdCl2). Male and female Sprague-Dawley rats were given GdCl3 (i.v., 10 mg/kg). Twenty-four hours later, livers were either processed for preparation of microsomes or for primary cultures of hepatocytes. Gadolinium chloride treatment reduced total hepatic microsomal P450 as well as aniline hydroxylase activity by approximately 30% in males and 20% in females. In hepatocytes isolated from rats pretreated with GdCl3, the toxicity caused by CCl4, but not CdCl2 was reduced. Interestingly, when GdCl3 was administered in vitro to microsomes, there was no effect on either the microsomal P450 difference spectra or p-hydroxylation of aniline. However, when GdCl3 was incubated with isolated hepatocytes, the cytotoxicity of CCl4 (but not CdCl2) was partially attenuated. These results suggest that, in addition to its inhibitory effects on KC, GdCl3 produces other effects which may alter the susceptibility of hepatocytes to toxicity caused by certain chemicals.


Food and Chemical Toxicology | 2002

Disposition and metabolism of isoeugenol in the male Fischer 344 rat

Drew A. Badger; Richard L. Smith; Jingqi Bao; Robert K. Kuester; I.G. Sipes

The primary objective of these studies was to determine the absorption, distribution, metabolism and excretion of isoeugenol following oral and intravenous administration to male Fischer-344 rats. Following a single oral dose of [14C]isoeugenol (156 mg/kg, 50 microCi/kg), greater than 85% of the administered dose was excreted in the urine predominantly as sulfate or glucuronide metabolites by 72 h. Approximately 10% was recovered in the feces, and less than 0.1% was recovered as CO(2) or expired organics. No parent isoeugenol was detected in the blood at any of the time points analyzed. Following iv administration (15.6 mg/kg, 100 microCi/kg), isoeugenol disappeared rapidly from the blood. The t(1/2) was 12 min and the Cl(s) was 1.9 l/min/kg. Excretion characteristics were similar to those of oral administration. The total amount of radioactivity remaining in selected tissues by 72 h was less than 0.25% of the dose following either oral or intravenous administration. Results of these studies show that isoeugenol is rapidly metabolized and is excreted predominantly in the urine as phase II conjugates of the parent compound.


Drug Metabolism and Disposition | 2007

Prediction of metabolic clearance of bisphenol A (4,4 '-dihydroxy-2,2-diphenylpropane) using cryopreserved human hepatocytes.

Robert K. Kuester; I. G. Sipes

This study investigated the kinetics of glucuronidation of bisphenol A (BPA; 4,4′-dihydroxy-2,2-diphenylpropane) in cryopreserved human hepatocytes (HCs). Incubation conditions were developed using Sprague-Dawley rat HCs. For determination of the kinetic constants of BPA glucuronidation rates with human HCs, viable HCs (0.125 × 106) were incubated with [14C]BPA (1.3-52 μM) for 10 min. The glucuronidation reaction demonstrated Michaelis-Menten kinetics and yielded a mean Km for males and females of 9 ± 3 and 8 ± 2 μM, respectively. The Vmax values of these reactions were 438 ± 129 pmol/min/106 for male HCs and 480 ± 208 pmol/min/106 for female HCs. The scaled intrinsic clearance (CLint) for male human HCs was 149 ± 67 ml/min/kg (range 53-246) and for female HCs was 165 ± 89 ml/min/kg (range 73-336). Overall, there are no apparent gender differences in the glucuronidation of BPA. These CLint values were then extrapolated to estimate total hepatic metabolic clearance (CLmet) using a nonrestrictive well stirred model. The estimated CLmet value for both male and female HCs was 6 ml/min/kg, which represents 30% of hepatic blood flow. Thus, in vivo clearance seems to depend highly on plasma protein binding. These in vitro results correlate well with in vivo studies in humans, which report extensive glucuronidation of BPA.


Toxicology | 2007

Absorption, distribution, metabolism and excretion of intravenously and orally administered tetrabromobisphenol A [2,3-dibromopropyl ether] in male Fischer-344 rats.

G.A. Knudsen; L.M. Jacobs; Robert K. Kuester; I.G. Sipes

Tetrabromobisphenol A bis[2,3-dibromopropyl ether],2,2-bis[3,5-dibromo-4-(2,3-dibromopropoxy)phenyl]propane is a brominated flame retardant with substantial U.S. production. Due to the likelihood of human exposure to TBBPA-DBPE and its probable metabolites, studies regarding the absorption, distribution, metabolism, and excretion were conducted. Male Fischer-344 rats were dosed with TBBPA-DBPE (20mg/kg) by oral gavage or IV administration. Following a single oral administration of TBBPA-DBPE, elimination of [(14)C] equivalents in the feces was extensive and rapid (95% of dose by 36h). Following repeated daily oral doses for 5 or 10 days, route and rate of elimination was similar to single administrations of TBBPA-DBPE. After IV administration, fecal excretion of [(14)C] equivalents was much slower (27% of dose eliminated by 36h, 71% by 96h). Urinary elimination was minimal (<0.1%) following oral or IV administration. A single peak that co-eluted with the standard of TBBPA-DBPE was detected in extracts of whole blood following oral or IV administration. TBBPA-DBPE elimination from the blood was slow. Kinetic constants following IV dosing were-t(1/2beta): 24.8h; CL(b): 0.1mLmin(-1). Kinetic constants following oral dosing were: t(1/2alpha): 2.5h; t(1/2beta): 13.9h; CL(b): 4.6mLmin(-1). Systemic bioavailability was 2.2%. Liver was the major site of disposition following oral or IV administration. After oral administration, 1% of the dose was eliminated in bile in 24h (as metabolites). In in vitro experiments utilizing hepatocytes or liver microsomal protein, no detectable metabolism of TBBPA-DBPE occurred. These data indicate that TBBPA-DBPE is poorly absorbed from the gastrointestinal tract. Compound which is absorbed is sequestered in the liver, slowly metabolized, and eliminated in the feces.


Drug Metabolism and Disposition | 2008

The Effects of Dose and Route on the Toxicokinetics and Disposition of 1-Butyl-3-methylimidazolium Chloride in Male F-344 Rats and Female B6C3F1 Mice

I. G. Sipes; G. A. Knudsen; Robert K. Kuester

These studies characterize the effect of dose and route of administration on the disposition and elimination of the ionic liquid, 1-butyl-3-methylimidazolium chloride (Bmim-Cl). After i.v. (5 mg/kg) or oral (50 mg/kg) administration to male F-344 rats [14C]Bmim-Cl detected in blood decreased rapidly. Clearance rates from the blood after i.v. and oral administration were similar (7.4 and 11.9 ml/min, respectively). Systemic bioavailability was determined to be 62.1% of a 50 mg/kg dose in rats. Urinary excretion of the parent compound by rats was the major route of elimination (i.v.: 91% in 24 h; oral: 55–74% in 24 h). The rates and routes of elimination were not affected by escalation of dose (0.5–50 mg/kg) or repeated oral administration (five daily administrations, 50 mg/kg) and were similar in male rats and B6C3F1 female mice (86–95% of dose eliminated in 24 h). Apparent systemic exposure to Bmim-Cl after dermal administration was dependent upon vehicle, as assessed by the percentage of dose eliminated in urine after application in a particular vehicle (water: 1%; ethanol/water: 3%; and dimethylformamide/water: 13% of dose). Regardless of gender, species, dose, route, or number of exposures, high-pressure liquid chromatography-UV/visible-radiometric analyses of urine samples showed a single peak that coeluted with the Bmim-Cl standard. These studies illustrate that systemic bioavailability of Bmim-Cl is high, tissue disposition and metabolism are negligible, and absorbed compound is extensively extracted by the kidney and eliminated in the urine as the parent compound.


Toxicology | 2011

Induction of DNA damage in human urothelial cells by the brominated flame retardant 2, 2-Bis (bromomethyl)-1, 3-propanediol: role of oxidative stress

Weixi Kong; Robert K. Kuester; Alfred Gallegos; I. Glenn Sipes

2,2-bis(bromomethyl)-1,3-propanediol (BMP) is an extensively used brominated flame retardant found in urethane foams and polyester resins. In a 2-year dietary study conducted by the National Toxicology Program, BMP caused neoplastic lesions at multiple sites including the urinary bladder in both rats and mice. The mechanism of its carcinogenic effect is unknown. In the present study, using SV-40 immortalized human urothelial cells (UROtsa), endpoints associated with BMP induced DNA damage and oxidative stress were investigated. The effects of time (1-24h) and concentration (5-100 μM) on BMP induced DNA strand breaks were assessed via the alkaline comet assay. The results revealed evidence of DNA strand breaks at 1 and 3h following incubation of cells with non-cytotoxic concentrations of BMP. Strand breaks were not present after 6h of incubation. Evidences for BMP associated oxidative stress include: an elevation of intracellular ROS formation as well as induction of Nrf2 and HSP70 protein levels. In addition, DNA strand breaks were attenuated when cells were pre-treated with N-acetyl-l-cysteine (NAC) and oxidative base modifications were revealed when a lesion specific endonuclease, human 8-hydroxyguanine DNA glycosylase 1 (hOGG1) was introduced into the comet assay. In conclusion, these results demonstrate that BMP induces DNA strand breaks and oxidative base damage in UROtsa cells. Oxidative stress is a significant, determinant factor in mediating these DNA lesions. These early genotoxic events may, in part, contribute to BMP-induced carcinogenesis observed in rodents.


Drug Metabolism and Disposition | 2011

Characterization of the inhibitory effects of N-butylpyridinium chloride and structurally related ionic liquids on organic cation transporters 1/2 and human toxic extrusion transporters 1/2-k in vitro and in vivo.

Yaofeng Cheng; Lucy J. Martínez-Guerrero; Stephen H. Wright; Robert K. Kuester; Michelle J. Hooth; I. Glenn Sipes

Ionic liquids (ILs) are a class of salts that are expected to be used as a new source of solvents and for many other applications. Our previous studies revealed that selected ILs, structurally related organic cations, are eliminated exclusively in urine as the parent compound, partially mediated by renal transporters. This study investigated the inhibitory effects of N-butylpyridinium chloride (NBuPy-Cl) and structurally related ILs on organic cation transporters (OCTs) and multidrug and toxic extrusion transporters (MATEs) in vitro and in vivo. After Chinese hamster ovary cells expressing rat (r) OCT1, rOCT2, human (h) OCT2, hMATE1, or hMATE2-K were constructed, the ability of NBuPy-Cl, 1-methyl-3-butylimidazolium chloride (Bmim-Cl), N-butyl-N-methylpyrrolidinium chloride (BmPy-Cl), and alkyl substituted pyridinium ILs to inhibit these transporters was determined in vitro. NBuPy-Cl (0, 0.5, or 2 mg/kg per hour) was also infused into rats to assess its effect on the pharmacokinetics of metformin, a substrate of OCTs and MATEs. NBuPy-Cl, Bmim-Cl, and BmPy-Cl displayed strong inhibitory effects on these transporters (IC50 = 0.2–8.5 μM). In addition, the inhibitory effects of alkyl-substituted pyridinium ILs on OCTs increased dramatically as the length of the alkyl chain increased. The IC50 values were 0.1, 3.8, 14, and 671 μM (hexyl-, butyl-, and ethyl-pyridinium and pyridinium chloride) for rOCT2-mediated metformin transport. Similar structurally related inhibitory kinetics were also observed for rOCT1 and hOCT2. The in vivo coadministration study revealed that NBuPy-Cl reduced the renal clearance of metformin in rats. These results demonstrate that ILs compete with other substrates of OCTs and MATEs and could alter the in vivo pharmacokinetics of such substrates.


Drug Metabolism and Disposition | 2009

Effects of Dose and Route on the Disposition and Kinetics of 1-Butyl-1-methylpyrrolidinium Chloride in Male F-344 Rats

G. A. Knudsen; Yaofeng Cheng; Robert K. Kuester; Michelle J. Hooth; I. G. Sipes

Studies were conducted to characterize the effects of dose and route of administration on the disposition of 1-butyl-1-methylpyrrolidinium (BmPy-Cl) in male Fischer-344 rats. After a single oral administration of [14C]BmPy-Cl (50 mg/kg), BmPy-Cl in the blood decreased rapidly after Cmax of 89.1 min with a distribution half-life (t1/2α) of 21 min, an elimination half-life (t1/2β) of 5.6 h, and a total body clearance of 7.6 ml/min. After oral administration (50, 5, and 0.5 mg/kg), 50 to 70% of the administered radioactivity was recovered in the feces, with the remainder recovered in the urine. Serial daily oral administrations of [14C]BmPy-Cl (50 mg/kg/day for 5 days) did not result in a notable alteration in disposition or elimination. After each administration, 88 to 94% of the dose was eliminated in a 24-h period, with 63 to 76% of dose recovered in the feces. Intravenous administration of [14C]BmPy-Cl (5 mg/kg) resulted in biphasic elimination. Oral systemic bioavailability was 43.4%, approximately equal to the dose recovered in urine after oral administration (29–38%). Total dermal absorption of [14C]BmPy-Cl (5 mg/kg) was moderate when it was applied in dimethylformamide-water (34 ± 13%), variable in water (22 ± 8%), or minimal in ethanol-water (13 ± 1%) vehicles. Urine was the predominant route of elimination regardless of vehicle. Only parent [14C]BmPy-Cl was detected in the urine after all doses and routes of administration. BmPy-Cl was found to be a substrate for (Kt = 37 μM) and inhibitor of (IC50/tetraethylammonium = 0.5 μM) human organic cation transporter 2. In summary, BmPy-Cl is moderately absorbed, extracted by the kidney, and eliminated in the urine as parent compound, independent of dose, number, or route of administration.

Collaboration


Dive into the Robert K. Kuester's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael P. Waalkes

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge