Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert L. Bacallao is active.

Publication


Featured researches published by Robert L. Bacallao.


American Journal of Physiology-renal Physiology | 2011

Impaired endothelial proliferation and mesenchymal transition contribute to vascular rarefaction following acute kidney injury

David P. Basile; Jessica L. Friedrich; Jasmina Spahic; Nicole L. Knipe; Henry Mang; Ellen C. Leonard; Saeed Changizi-Ashtiyani; Robert L. Bacallao; Bruce A. Molitoris; Timothy A. Sutton

Acute kidney injury induces the loss of renal microvessels, but the fate of endothelial cells and the mechanism of potential vascular endothelial growth factor (VEGF)-mediated protection is unknown. Cumulative cell proliferation was analyzed in the kidney of Sprague-Dawley rats following ischemia-reperfusion (I/R) injury by repetitive administration of BrdU (twice daily) and colocalization in endothelial cells with CD31 or cablin. Proliferating endothelial cells were undetectable for up to 2 days following I/R and accounted for only ∼1% of BrdU-positive cells after 7 days. VEGF-121 preserved vascular loss following I/R but did not affect proliferation of endothelial, perivascular cells or tubular cells. Endothelial mesenchymal transition states were identified by localizing endothelial markers (CD31, cablin, or infused tomato lectin) with the fibroblast marker S100A4. Such structures were prominent within 6 h and sustained for at least 7 days following I/R. A Tie-2-cre transgenic crossed with a yellow fluorescent protein (YFP) reporter mouse was used to trace the fate of endothelial cells and demonstrated interstititial expansion of YFP-positive cells colocalizing with S100A4 and smooth muscle actin following I/R. The interstitial expansion of YFP cells was attenuated by VEGF-121. Multiphoton imaging of transgenic mice revealed the alteration of YFP-positive vascular cells associated with blood vessels characterized by limited perfusion in vivo. Taken together, these data indicate that vascular dropout post-AKI results from endothelial phenotypic transition combined with an impaired regenerative capacity, which may contribute to progressive chronic kidney disease.


Archive | 2006

Guiding Principles of Specimen Preservation for Confocal Fluorescence Microscopy

Robert L. Bacallao; Sadaf Sohrab; Carrie L. Phillips

Traditionally, biologists have been confined to transmission electron microscopy (TEM) and light microscopy (LM) in order to correlate biochemical and molecular data with morphology. Electron microscopy (EM) provides fine ultrastructural detail but is limited to the study of cellular structures that react with electron dense stains deposited in fixed specimens. Immunogold labeling permits the study of non–electron-dense material, but EM sections must still be very thin to avoid problems with the penetration of the labeled antibodies and to reduce scattering of the electron beam.


Journal of The American Society of Nephrology | 2004

Renal Cysts of inv/inv Mice Resemble Early Infantile Nephronophthisis

Carrie L. Phillips; Karen J. Miller; Adele J. Filson; Jens Nürnberger; Jeffrey L. Clendenon; Gregory W. Cook; Kenneth W. Dunn; Paul A. Overbeek; Vincent H. Gattone; Robert L. Bacallao

Cystic kidney disease has been linked to mutations in the Invs gene in mice with inversion of embryonic turning (inv/inv) and the INVS (NPHP2) gene in infants with nephronophthisis type 2 (NPHP2). The inv mouse model features multiorgan defects including renal cysts, altered left-right laterality, and hepatobiliary duct malformations transmitted in an autosomal recessive manner. Affected mice usually die of renal and liver failure by postnatal day 7. Although cardiopulmonary and liver anomalies have been carefully detailed, renal cysts have yet to be fully characterized in inv/inv. By use of three-dimensional visualization by two-photon microscopy, this study provides the first comprehensive analysis of in situ cyst formation and progression in inv/inv kidneys. At embryonic day 15, there is dilatation of Bowmans capsule followed temporally by corticomedullary cysts involving collecting ducts, proximal tubules, and thick ascending limbs. Collecting ducts of newborn inv/inv mice are uniformly and diffusely cystic from medulla to cortex, with normal diameters found only at their most proximal tips. Proximal tubules form fusiform cysts that alternate with segments of normal or narrowed caliber along torturous convolutions. Because defective cilia have been linked to situs inversus and cystogenesis, we examined inv/inv cilia by scanning and transmission electron microscopy. The former detected monocilia of expected length in cystic collecting ducts and proximal tubules; the latter demonstrated the usual 9 + 2 pattern in respiratory cilia. The inv mutant mouse has renal cysts resembling infantile NPHP2 and will provide broader insight into the role cilia play in renal cystogenesis.


American Journal of Physiology-renal Physiology | 2009

Attenuated, flow-induced ATP release contributes to absence of flow-sensitive, purinergic Cai2+ signaling in human ADPKD cyst epithelial cells

Chang Xu; Boris E. Shmukler; Katherine K. Nishimura; Elzbieta Kaczmarek; Sandro Rossetti; Peter C. Harris; Angela Wandinger-Ness; Robert L. Bacallao; Seth L. Alper

Flow-induced cytosolic Ca2+ Ca(i)2+ signaling in renal tubular epithelial cells is mediated in part through P2 receptor (P2R) activation by locally released ATP. The ability of P2R to regulate salt and water reabsorption has suggested a possible contribution of ATP release and paracrine P2R activation to cystogenesis and/or enlargement in autosomal dominant polycystic kidney disease (ADPKD). We and others have demonstrated in human ADPKD cyst cells the absence of flow-induced Ca(i)2+ signaling exhibited by normal renal epithelial cells. We now extend these findings to primary and telomerase-immortalized normal and ADPKD epithelial cells of different genotype and of both proximal and distal origins. Flow-induced elevation of Ca(i)2+ concentration ([Ca2+](i)) was absent from ADPKD cyst cells, but in normal cells was mediated by flow-sensitive ATP release and paracrine P2R activation, modulated by ecto-nucleotidase activity, and abrogated by P2R inhibition or extracellular ATP hydrolysis. In contrast to the elevated ATP release from ADPKD cells in static isotonic conditions or in hypotonic conditions, flow-induced ATP release from cyst cells was lower than from normal cells. Extracellular ATP rapidly reduced thapsigargin-elevated [Ca2+](i) in both ADPKD cyst and normal cells, but cyst cells lacked the subsequent, slow, oxidized ATP-sensitive [Ca2+](i) recovery present in normal cells. Telomerase-immortalized cyst cells also exhibited altered CD39 and P2X7 mRNA levels. Thus the loss of flow-induced, P2R-mediated Ca(i)2+ signaling in human ADPKD cyst epithelial cells was accompanied by reduced flow-sensitive ATP release, altered purinergic regulation of store-operated Ca2+ entry, and altered expression of gene products controlling extracellular nucleotide signaling.


American Journal of Physiology-renal Physiology | 2010

Rab10 associates with primary cilia and the exocyst complex in renal epithelial cells

Clifford M. Babbey; Robert L. Bacallao; Kenneth W. Dunn

Rab10, a mammalian homolog of the yeast Sec4p protein, has previously been associated with endocytic recycling and biosynthetic membrane transport in cultured epithelia and with Glut4 translocation in adipocytes. Here, we report that Rab10 associates with primary cilia in renal epithelia in culture and in vivo. In addition, we find that Rab10 also colocalizes with exocyst proteins at the base of nascent cilia, and physically interacts with the exocyst complex, as detected with anti-Sec8 antibodies. These data suggest that membrane transport to the primary cilum may be mediated by interactions between Rab10 and an exocyst complex located at the cilium base.


Biochimica et Biophysica Acta | 2011

Adult human CD133/1+ kidney cells isolated from papilla integrate into developing kidney tubules

Heather H. Ward; Elsa Romero; Angela Welford; Gavin Pickett; Robert L. Bacallao; Vincent H. Gattone; Scott A. Ness; Angela Wandinger-Ness; Tamara Roitbak

Approximately 60,000 patients in the United States are waiting for a kidney transplant due to genetic, immunologic and environmentally caused kidney failure. Adult human renal stem cells could offer opportunities for autologous transplant and repair of damaged organs. Current data suggest that there are multiple progenitor types in the kidney with distinct localizations. In the present study, we characterize cells derived from human kidney papilla and show their capacity for tubulogenesis. In situ, nestin(+) and CD133/1(+) cells were found extensively intercalated between tubular epithelia in the loops of Henle of renal papilla, but not of the cortex. Populations of primary cells from the renal cortex and renal papilla were isolated by enzymatic digestion from human kidneys unsuited for transplant and immuno-enriched for CD133/1(+) cells. Isolated CD133/1(+) papillary cells were positive for nestin, as well as several human embryonic stem cell markers (SSEA4, Nanog, SOX2, and OCT4/POU5F1) and could be triggered to adopt tubular epithelial and neuronal-like phenotypes. Isolated papillary cells exhibited morphologic plasticity upon modulation of culture conditions and inhibition of asymmetric cell division. Labeled papillary cells readily associated with cortical tubular epithelia in co-culture and 3-dimensional collagen gel cultures. Heterologous organ culture demonstrated that CD133/1(+) progenitors from the papilla and cortex became integrated into developing kidney tubules. Tubular epithelia did not participate in tubulogenesis. Human renal papilla harbor cells with the hallmarks of adult kidney stem/progenitor cells that can be amplified and phenotypically modulated in culture while retaining the capacity to form new kidney tubules. This article is part of a Special Issue entitled: Polycystic Kidney Disease.


Clinical Genetics | 2009

Cystic kidney diseases and planar cell polarity signaling

Robert L. Bacallao; H McNeill

Renal cystic diseases are a major clinical concern as they are the most common genetic cause of end‐stage renal disease. While many of the genes causing cystic disease have been identified in recent years, knowing the molecular nature of the mutations has not clarified the mechanisms underlying cyst formation. Recent research in model organisms has suggested that cyst formation may be because of defective planar cell polarity (PCP) and/or ciliary defects. In this review, we first outline the clinical features of renal cystic diseases and then discuss current research linking our understanding of cystic kidney disease to PCP and cilia.


American Journal of Physiology-renal Physiology | 2011

MMP-9 gene deletion mitigates microvascular loss in a model of ischemic acute kidney injury

So Young Lee; Markus Hörbelt; Henry E. Mang; Nicole L. Knipe; Robert L. Bacallao; Yoshikazu Sado; Timothy A. Sutton

Microvascular rarefaction following an episode of acute kidney injury (AKI) is associated with renal hypoxia and progression toward chronic kidney disease. The mechanisms contributing to microvascular rarefaction are not well-understood, although disruption in local angioregulatory substances is thought to contribute. Matrix metalloproteinase (MMP)-9 is an endopeptidase important in modifying the extracellular matrix (ECM) and remodeling the vasculature. We examined the role of MMP-9 gene deletion on microvascular rarefaction in a rodent model of ischemic AKI. MMP-9-null mice and background control (FVB/NJ) mice were subjected to bilateral renal artery clamping for 20 min followed by reperfusion for 14, 28, or 56 days. Serum creatinine level in MMP-9-null mice 24 h after injury [1.4 (SD 0.8) mg/dl] was not significantly different from FVB/NJ mice [1.5 (SD 0.6) mg/dl]. Four weeks after ischemic injury, FVB/NJ mice demonstrated a 30-40% loss of microvascular density compared with sham-operated (SO) mice. In contrast, microvascular density was not significantly different in the MMP-9-null mice at this time following injury compared with SO mice. FVB/NJ mice had a 50% decrease in tissue vascular endothelial growth factor (VEGF) 2 wk after ischemic insult compared with SO mice. A significant difference in VEGF was not observed in MMP-9-null mice compared with SO mice. There was no significant difference in the liberation of angioinhibitory fragments from the ECM between MMP-9-null mice and FVB/NJ mice following ischemic injury. In conclusion, MMP-9 deletion stabilizes microvascular density following ischemic AKI in part by preserving tissue VEGF levels.


Traffic | 2000

ADPKD: A Human Disease Altering Golgi Function and Basolateral Exocytosis in Renal Epithelia

Audra J. Charron; Robert L. Bacallao; Angela Wandinger-Ness

Epithelial cells explanted from autosomal dominant polycystic kidney disease (ADPKD) tissue exhibit impaired exocytosis, specifically between the Golgi and basolateral membrane (Charron A, Nakamura B, Bacallo R, Wandinger‐Ness A. Compromised cytoarchitecture and polarized trafficking in autosomal dominant polycystic kidney disease cells. J Cell Biol 2000; 148: 111–124.). Here the defect is shown to result in the accumulation of the basolateral transport marker vesicular stomatitis virus (VSV) G protein in the Golgi complex. Golgi complex morphology is consequently altered in the disease cells, evident in the noticeable fenestration and dilation of the cisternae. Further detailed microscopic evaluation of normal kidney and ADPKD cells revealed that ineffective basolateral exocytosis correlated with modulations in the localization of select post‐Golgi transport effectors. The cytosolic coat proteins p200/myosin II and caveolin exhibited enhanced association with the cytoskeleton or the Golgi of the disease cells, respectively. Most cytoskeletal components with known roles in vesicle translocation or formation were normally arrayed with the exception of Golgi β‐spectrin, which was less prevalent on vesicles. The rab8 GTPase, important for basolateral vesicle targeting, was redistributed from the perinuclear Golgi region to disperse vesicles in ADPKD cells. At the basolateral membrane of ADPKD cells, there was a notable loss of the exocyst components sec6/sec8 and an unidentified syntaxin. It is postulated that dysregulated basolateral transport effector function precipitates the disruption of basolateral exocytosis and dilation of the ADPKD cell Golgi as basolateral cargo accumulates within the cisternae.


Circulation | 2014

Survivin-Induced Abnormal Ploidy Contributes to Cystic Kidney and Aneurysm Formation

Wissam A. AbouAlaiwi; Brian S. Muntean; Shobha Ratnam; Bina Joe; Lijun Liu; Robert L. Booth; Ingrid Rodriguez; Britney S. Herbert; Robert L. Bacallao; Marcus Fruttiger; Tak W. Mak; Jing Zhou; Surya M. Nauli

Background— Cystic kidneys and vascular aneurysms are clinical manifestations seen in patients with polycystic kidney disease, a cilia-associated pathology (ciliopathy). Survivin overexpression is associated with cancer, but the clinical pathology associated with survivin downregulation or knockout has never been studied before. The present studies aim to examine whether and how cilia function (Pkd1 or Pkd2) and structure (Tg737) play a role in cystic kidney and aneurysm through survivin downregulation. Methods and Results— Cysts and aneurysms from polycystic kidney disease patients, Pkd mouse, and zebrafish models are characterized by chromosome instability and low survivin expression. This triggers cytokinesis defects and formation of nuclear polyploidy or aneuploidy. In vivo conditional mouse and zebrafish models confirm that survivin gene deletion in the kidneys results in a cystic phenotype. As in hypertensive Pkd1, Pkd2, and Tg737 models, aneurysm formation can also be induced in vascular-specific normotensive survivin mice. Survivin knockout also contributes to abnormal oriented cell division in both kidney and vasculature. Furthermore, survivin expression and ciliary localization are regulated by flow-induced cilia activation through protein kinase C, Akt and nuclear factor-&kgr;B. Circumventing ciliary function by re-expressing survivin can rescue polycystic kidney disease phenotypes. Conclusions— For the first time, our studies offer a unifying mechanism that explains both renal and vascular phenotypes in polycystic kidney disease. Although primary cilia dysfunction accounts for aneurysm formation and hypertension, hypertension itself does not cause aneurysm. Furthermore, aneurysm formation and cyst formation share a common cellular and molecular pathway involving cilia function or structure, survivin expression, cytokinesis, cell ploidy, symmetrical cell division, and tissue architecture orientation.

Collaboration


Dive into the Robert L. Bacallao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge