Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert L. Judson is active.

Publication


Featured researches published by Robert L. Judson.


Nature Biotechnology | 2009

Embryonic stem cell–specific microRNAs promote induced pluripotency

Robert L. Judson; Monica Venere; Robert Blelloch

This report demonstrates that introduction of microRNAs (miRNAs) specific to embryonic stem cells enhances the production of mouse induced pluripotent stem (iPS) cells. The miRNAs miR-291-3p, miR-294 and miR-295 increase the efficiency of reprogramming by Oct4, Sox2 and Klf4, but not by these factors plus cMyc. cMyc binds the promoter of the miRNAs, suggesting that they are downstream effectors of cMyc during reprogramming. However, unlike cMyc, the miRNAs induce a homogeneous population of iPS cell colonies.


Nature Biotechnology | 2011

Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells

Deepa Subramanyam; Samy Lamouille; Robert L. Judson; Jason Liu; Nathan Bucay; Rik Derynck; Robert Blelloch

The embryonic stem cell–specific cell cycle–regulating (ESCC) family of microRNAs (miRNAs) enhances reprogramming of mouse embryonic fibroblasts to induced pluripotent stem cells. Here we show that the human ESCC miRNA orthologs hsa-miR-302b and hsa-miR-372 promote human somatic cell reprogramming. Furthermore, these miRNAs repress multiple target genes, with downregulation of individual targets only partially recapitulating the total miRNA effects. These targets regulate various cellular processes, including cell cycle, epithelial-mesenchymal transition (EMT), epigenetic regulation and vesicular transport. ESCC miRNAs have a known role in regulating the unique embryonic stem cell cycle. We show that they also increase the kinetics of mesenchymal-epithelial transition during reprogramming and block TGFβ-induced EMT of human epithelial cells. These results demonstrate that the ESCC miRNAs promote dedifferentiation by acting on multiple downstream pathways. We propose that individual miRNAs generally act through numerous pathways that synergize to regulate and enforce cell fate decisions.


Nature Medicine | 2010

miR-380-5p represses p53 to control cellular survival and is associated with poor outcome in MYCN amplified neuroblastoma

Alexander Swarbrick; Susan L. Woods; Alex D. Shaw; Asha Balakrishnan; Yuwei Phua; Akira Nguyen; Yvan Chanthery; Lionel Lim; Lesley J. Ashton; Robert L. Judson; Noelle E. Huskey; Robert Blelloch; Michelle Haber; Murray D. Norris; Peter Lengyel; Christopher S. Hackett; Thomas Preiss; Albert Chetcuti; Christopher S. Sullivan; Eric G. Marcusson; William A. Weiss; Noelle D. L'Etoile; Andrei Goga

Inactivation of the p53 tumor suppressor pathway allows cell survival in times of stress and occurs in many human cancers; however, normal embryonic stem cells and some cancers such as neuroblastoma maintain wild-type human TP53 and mouse Trp53 (referred to collectively as p53 herein). Here we describe a miRNA, miR-380-5p, that represses p53 expression via a conserved sequence in the p53 3′ untranslated region (UTR). miR-380-5p is highly expressed in mouse embryonic stem cells and neuroblastomas, and high expression correlates with poor outcome in neuroblastomas with neuroblastoma derived v-myc myelocytomatosis viral-related oncogene (MYCN) amplification. miR-380 overexpression cooperates with activated HRAS oncoprotein to transform primary cells, block oncogene-induced senescence and form tumors in mice. Conversely, inhibition of endogenous miR-380-5p in embryonic stem or neuroblastoma cells results in induction of p53, and extensive apoptotic cell death. In vivo delivery of a miR-380-5p antagonist decreases tumor size in an orthotopic mouse model of neuroblastoma. We demonstrate a new mechanism of p53 regulation in cancer and stem cells and uncover a potential therapeutic target for neuroblastoma.


Annual Review of Cell and Developmental Biology | 2013

microRNA Control of Mouse and Human Pluripotent Stem Cell Behavior

Tobias S. Greve; Robert L. Judson; Robert Blelloch

In the past decade, significant progress has been made in understanding both microRNA function and cellular pluripotency. Here we review the intersection of these two exciting fields. While microRNAs are not required for the establishment and maintenance of pluripotency in early development and cell culture, respectively, they are critically important in the regulation of the cell cycle structure of pluripotent stem cells as well as the silencing of the pluripotency program upon differentiation. Pluripotent cells, both in vivo and in vitro, dominantly express a single family of microRNAs, which can promote the reprogramming of a somatic cell back to a pluripotent state. Here, we review the known mechanisms by which these and other microRNAs regulate the different aspects of the pluripotent stem cell program in both mouse and human.


Nature Structural & Molecular Biology | 2013

MicroRNA-based discovery of barriers to dedifferentiation of fibroblasts to pluripotent stem cells.

Robert L. Judson; Tobias S. Greve; Ronald J. Parchem; Robert Blelloch

Individual microRNAs (miRNAs) can target hundreds of mRNAs forming networks of presumably cooperating genes. To test this presumption, we functionally screened miRNAs and their targets in the context of dedifferentiation of mouse fibroblasts to induced pluripotent stem cells (iPSCs). Along with the miR-302–miR-294 family, the miR-181 family arose as a previously unidentified enhancer of the initiation phase of reprogramming. Endogenous miR-181 miRNAs were transiently elevated with the introduction of Pou5f1 (also known as Oct4), Sox2 and Klf4 (referred to as OSK), and miR-181 inhibition diminished iPSC colony formation. We tested the functional contribution of 114 individual targets of the two families, revealing 25 genes that normally suppress initiation. Coinhibition of targets cooperatively promoted both the frequency and kinetics of OSK-induced reprogramming. These data establish two of the largest functionally defined networks of miRNA-mRNA interactions and reveal previously unidentified relationships among genes that act together to suppress early stages of reprogramming.


Stem cell reports | 2015

CDK1 Inhibition Targets the p53-NOXA-MCL1 Axis, Selectively Kills Embryonic Stem Cells, and Prevents Teratoma Formation

Noelle E. Huskey; Tingxia Guo; Kimberley Evason; Olga Momcilovic; David Pardo; Katelyn J. Creasman; Robert L. Judson; Robert Blelloch; Scott A. Oakes; Matthias Hebrok; Andrei Goga

Summary Embryonic stem cells (ESCs) have adopted an accelerated cell-cycle program with shortened gap phases and precocious expression of cell-cycle regulatory proteins, including cyclins and cyclin-dependent kinases (CDKs). We examined the effect of CDK inhibition on the pathways regulating proliferation and survival of ESCs. We found that inhibiting cyclin-dependent kinase 1 (CDK1) leads to activation of the DNA damage response, nuclear p53 stabilization, activation of a subset of p53 target genes including NOXA, and negative regulation of the anti-apoptotic protein MCL1 in human and mouse ESCs, but not differentiated cells. We demonstrate that MCL1 is highly expressed in ESCs and loss of MCL1 leads to ESC death. Finally, we show that clinically relevant CDK1 inhibitors prevent formation of ESC-derived tumors and induce necrosis in established ESC-derived tumors. Our data demonstrate that ES cells are uniquely sensitive to CDK1 inhibition via a p53/NOXA/MCL1 pathway.


Scientific Reports | 2017

High accuracy label-free classification of single-cell kinetic states from holographic cytometry of human melanoma cells

Miroslav Hejna; Aparna Jorapur; Jun S. Song; Robert L. Judson

Digital holographic cytometry (DHC) permits label-free visualization of adherent cells. Dozens of cellular features can be derived from segmentation of hologram-derived images. However, the accuracy of single cell classification by these features remains limited for most applications, and lack of standardization metrics has hindered independent experimental comparison and validation. Here we identify twenty-six DHC-derived features that provide biologically independent information across a variety of mammalian cell state transitions. When trained on these features, machine-learning algorithms achieve blind single cell classification with up to 95% accuracy. Using classification accuracy to guide platform optimization, we develop methods to standardize holograms for the purpose of kinetic single cell cytometry. Applying our approach to human melanoma cells treated with a panel of cancer therapeutics, we track dynamic changes in cellular behavior and cell state over time. We provide the methods and computational tools for optimizing DHC for kinetic single adherent cell classification.


Journal of Virology | 2006

The Self Primer of the Long Terminal Repeat Retrotransposon Tf1 Is Not Removed during Reverse Transcription

Angela Atwood-Moore; Kenneth Yan; Robert L. Judson; Henry L. Levin

ABSTRACT The long terminal repeat retrotransposon Tf1 of Schizosaccharomyces pombe uses a unique mechanism of self priming to initiate reverse transcription. Instead of using a tRNA, Tf1 primes minus-strand synthesis with an 11-nucleotide RNA removed from the 5′ end of its own transcript. We tested whether the self primer of Tf1 was similar to tRNA primers in being removed from the cDNA by RNase H. Our analysis of Tf1 cDNA extracted from virus-like particles revealed the surprising observation that the dominant species of cDNA retained the self primer. This suggests that integration of the cDNA relies on mechanisms other than reverse transcription to remove the primer.


Nature Communications | 2017

Combined activation of MAP kinase pathway and β-catenin signaling cause deep penetrating nevi

Iwei Yeh; Ursula E. Lang; Emeline Durieux; Meng Kian Tee; Aparna Jorapur; A. Hunter Shain; Véronique Haddad; Daniel Pissaloux; Xu Chen; Lorenzo Cerroni; Robert L. Judson; Philip E. LeBoit; Timothy H. McCalmont; Boris C. Bastian; Arnaud de la Fouchardière

Deep penetrating nevus (DPN) is characterized by enlarged, pigmented melanocytes that extend through the dermis. DPN can be difficult to distinguish from melanoma but rarely displays aggressive biological behavior. Here, we identify a combination of mutations of the β-catenin and mitogen-activated protein kinase pathways as characteristic of DPN. Mutations of the β-catenin pathway change the phenotype of a common nevus with BRAF mutation into that of DPN, with increased pigmentation, cell volume and nuclear cyclin D1 levels. Our results suggest that constitutive β-catenin pathway activation promotes tumorigenesis by overriding dependencies on the microenvironment that constrain proliferation of common nevi. In melanoma that arose from DPN we find additional oncogenic alterations. We identify DPN as an intermediate stage in the step-wise progression from nevus to melanoma. In summary, we delineate specific genetic alterations and their sequential order, information that can assist in the diagnostic classification and grading of these distinctive neoplasms.Deep penetrating nevi (DPN) are unusual melanocytic neoplasms with unknown genetic drivers. Here the authors show that majority of DPN harbor activating mutations in the β-catenin and the MAP-kinase pathways; this characteristic can help in the classification and grading of these distinctive neoplasms.


Journal of Biological Chemistry | 2008

The GP(Y/F) domain of TF1 integrase multimerizes when present in a fragment, and substitutions in this domain reduce enzymatic activity of the full-length protein.

Hirotaka Ebina; Atreyi Ghatak Chatterjee; Robert L. Judson; Henry L. Levin

Integrases (INs) of retroviruses and long terminal repeat retrotransposons possess a C-terminal domain with DNA binding activity. Other than this binding activity, little is known about how the C-terminal domain contributes to integration. A stretch of conserved amino acids called the GP(Y/F) domain has been identified within the C-terminal IN domains of two distantly related families, the γ-retroviruses and the metavirus retrotransposons. To enhance understanding of the C-terminal domain, we examined the function of the GP(Y/F) domain in the IN of Tf1, a long terminal repeat retrotransposon of Schizosaccharomyces pombe. The activities of recombinant IN were measured with an assay that modeled the reverse of integration called disintegration. Although deletion of the entire C-terminal domain disrupted disintegration activity, an alanine substitution (P365A) in a conserved amino acid of the GP(Y/F) domain did not significantly reduce disintegration. When assayed for the ability to join two molecules of DNA in a reaction that modeled forward integration, the P365A substitution disrupted activity. UV cross-linking experiments detected DNA binding activity in the C-terminal domain and found that this activity was not reduced by substitutions in two conserved amino acids of the GP(Y/F) domain, G364A and P365A. Gel filtration and cross-linking of a 71-amino acid fragment containing the GP(Y/F) domain revealed a surprising ability to form dimers, trimers, and tetramers that was disrupted by the G364A and P365A substitutions. These results suggest that the GP(Y/F) residues may play roles in promoting multimerization and intermolecular strand joining.

Collaboration


Dive into the Robert L. Judson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aparna Jorapur

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beth S. Ruben

University of California

View shared research outputs
Top Co-Authors

Avatar

Iwei Yeh

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard Yu

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge