Robert L. Medcalf
Monash University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert L. Medcalf.
Neuron | 2006
Andre L. Samson; Robert L. Medcalf
For over a decade, tissue-type plasminogen activator (t-PA), a serine protease classically known for its profibrinolytic role in the vasculature, has been implicated in numerous aspects of the synaptic plasticity process. But despite being the most intensively studied protease of the CNS, the mechanisms and molecular mediators behind the action of t-PA on synaptic efficacy remain largely undefined. Rather than examine the role of t-PA in proteolytic remodeling of the synaptic extracellular matrix, this review will focus on the evidence that defines t-PA as a direct modulator of neurotransmission and synaptic plasticity by impacting on glutamatergic and dopaminergic pathways.
Stroke | 2003
Gabriel T. Liberatore; Andre L. Samson; Christopher F. Bladin; Wolf-Dieter Schleuning; Robert L. Medcalf
Background and Purpose— Tissue-type plasminogen activator (tPA) promotes excitotoxic and ischemic injury within the brain. These findings have implications for the use of tPA in the treatment of acute ischemic stroke. The plasminogen activator from vampire bat (Desmodus rotundus) saliva (D rotundus salivary plasminogen activator [DSPA]; desmoteplase) is an effective plasminogen activator but, in contrast to tPA, is nearly inactive in the absence of a fibrin cofactor. The purpose of this study was to compare the ability of DSPA and tPA to promote kainate- and N-methyl-d-aspartate (NMDA)–induced neurodegeneration in tPA−/− mice and wild-type mice, respectively. Methods— tPA−/− mice were infused intracerebrally with either tPA or DSPA. The degree of neuronal survival after hippocampal injection of kainate was assessed histochemically. Wild-type mice were used to assess the extent of neuronal damage after intrastriatal injection of NMDA in the presence of tPA or DSPA. Immunohistochemistry and fibrin zymography were used to evaluate DSPA and tPA antigen or activity. Results— Infusion of tPA into tPA−/− mice restored sensitivity to kainate-mediated neurotoxicity and activation of microglia. DSPA was incapable of conferring sensitivity to kainate treatment, even when infused at 10-fold higher molar concentration than tPA. The presence of tPA also increased the lesion volume induced by NMDA injection into the striatum of wild-type mice, whereas DSPA had no effect. Conclusions— DSPA does not promote kainate- or NMDA-mediated neurotoxicity in vivo. These results provide significant impetus to evaluate DSPA in patients with ischemic stroke.
FEBS Journal | 2005
Robert L. Medcalf; Stan Stasinopoulos
Plasminogen activator inhibitor type‐2 (PAI‐2) is a nonconventional serine protease inhibitor (serpin) with unique and tantalizing properties that is generally considered to be an authentic and physiological inhibitor of urokinase. However, the fact that only a small percentage of PAI‐2 is secreted has been a long‐standing argument for alternative roles for this serpin. Indeed, PAI‐2 has been shown to have a number of intracellular roles: it can alter gene expression, influence the rate of cell proliferation and differentiation, and inhibit apoptosis in a manner independent of urokinase inhibition. Despite these recent advances in defining the intracellular function of PAI‐2, it still remains one of the most mysterious and enigmatic members of the serpin superfamily.
Journal of Neurochemistry | 2008
Andre L. Samson; Simon T. Nevin; David R. Croucher; Be’eri Niego; Philip B. Daniel; Thomas W. Weiss; Eliza Moreno; Denis Monard; Daniel A. Lawrence; Robert L. Medcalf
Glutamate is the main excitatory neurotransmitter of the CNS. Tissue‐type plasminogen activator (tPA) is recognized as a modulator of glutamatergic neurotransmission. This attribute is exemplified by its ability to potentiate calcium signaling following activation of the glutamate‐binding NMDA receptor (NMDAR). It has been hypothesized that tPA can directly cleave the NR1 subunit of the NMDAR and thereby potentiate NMDA‐induced calcium influx. In contrast, here we show that this increase in NMDAR signaling requires tPA to be proteolytically active, but does not involve cleavage of the NR1 subunit or plasminogen. Rather, we demonstrate that enhancement of NMDAR function by tPA is mediated by a member of the low‐density lipoprotein receptor (LDLR) family. Hence, this study proposes a novel functional relationship between tPA, the NMDAR, a LDLR and an unknown substrate which we suspect to be a serpin. Interestingly, whilst tPA alone failed to cleave NR1, cell‐surface NMDARs did serve as an efficient and discrete proteolytic target for plasmin. Hence, plasmin and tPA can affect the NMDAR via distinct avenues. Altogether, we find that plasmin directly proteolyses the NMDAR whilst tPA functions as an indirect modulator of NMDA‐induced events via LDLR engagement.
American Journal of Pathology | 2009
Lynette Pretorius; Xiao-Jun Du; Elizabeth A. Woodcock; Helen Kiriazis; Ruby C.Y. Lin; Silvana Marasco; Robert L. Medcalf; Ziqiu Ming; Geoffrey A. Head; Joon Win Tan; Nelly Cemerlang; Junichi Sadoshima; Tetsuo Shioi; Seigo Izumo; Elena V. Lukoshkova; Anthony M. Dart; Garry L. Jennings; Julie R. McMullen
Atrial fibrillation (AF) is the most common sustained arrhythmia presenting at cardiology departments. A limited understanding of the molecular mechanisms responsible for the development of AF has hindered treatment strategies. The purpose of this study was to assess whether reduced activation of phosphoinositide 3-kinase (PI3K, p110alpha) makes the compromised heart susceptible to AF. Risk factors for AF, including aging, obesity, and diabetes, have been associated with insulin resistance that leads to depressed/defective PI3K signaling. However, to date, there has been no link between PI3K(p110alpha) and AF. To address this question, we crossed a cardiac-specific transgenic mouse model of dilated cardiomyopathy (DCM) with a cardiac-specific transgenic mouse expressing a dominant negative mutant of PI3K (dnPI3K; reduces PI3K activity). Adult ( approximately 4.5 months) double-transgenic (dnPI3K-DCM), single-transgenic (DCM-Tg, dnPI3K-Tg), and nontransgenic mice were subjected to morphological, functional/ECG, microarray, and biochemical analyses. dnPI3K-DCM mice developed AF and had depressed cardiac function as well as greater atrial enlargement and fibrosis than DCM-Tg mice. AF was not detected in other groups. Aged DCM-Tg mice ( approximately 15 months) with a similar phenotype to dnPI3K-DCM mice (4.5 months) did not develop AF, suggesting loss of PI3K activity directly contributed to the AF phenotype. Furthermore, increasing PI3K activity reduced atrial fibrosis and improved cardiac conduction in DCM-Tg mice. Finally, in atrial appendages from patients with AF, PI3K activation was lower compared with tissue from patients in sinus rhythm. These results suggest a link between PI3K(p110alpha) and AF.
Journal of Thrombosis and Haemostasis | 2007
Robert L. Medcalf
Summary. The maintenance of a given physiological process demands a coordinated and spatially regulated pattern of gene regulation. This applies to genes encoding components of enzyme cascades, including those of the plasminogen activating system. This family of proteases is vital to fibrinolysis and dysregulation of the expression pattern of one or more of these proteins in response to inflammatory events can impact on hemostasis. Gene regulation occurs on many levels, and it is apparent that the genes encoding the plasminogen activator (fibrinolytic) proteins are subject to both direct transcriptional control and significant post‐transcriptional mechanisms. It is now clear that perturbation of these genes at either of these levels can dramatically alter expression levels and have a direct impact on the host’s response to a variety of physiological and pharmacological challenges. Inflammatory processes are well known to impact on the fibrinolytic system and to promote thrombosis, cancer and diabetes. This review discusses how inflammatory and other signals affect the transcriptional and post‐transcriptional expression patterns of this system, and how this modulates fibrinolysis in vivo.
Thrombosis and Haemostasis | 2005
Yoshikuni Nagamine; Robert L. Medcalf; Pura Muñoz-Cánoves
The core protein components of the plasminogen activator (PA) system are two plasminogen activators, two plasminogen activator inhibitors and a urokinase type plasminogen activator-specific cell surface receptor. Various types of biological regulation are exerted through the interplay of these components mutually and with extracellular matrix proteins and cell membrane proteins, with or without involving proteolytic activity. Reflecting these diverse biological roles, the level and activity of each component of the PA system is under the control of a variety of regulatory mechanisms. The expression level of a protein reflects the level of the corresponding mRNA, which is essentially the net result of de novo synthesis, i.e. transcription, and degradation. Many recent studies have shown that the regulation of mRNA stability is dynamic and cell specific. Accordingly, we are learning that the mRNAs of the PA system are also the subject of diverse regulatory mechanisms. In this short review, we summarize current understanding of the transcriptional and mRNA-stability regulation of the PA system.
Stroke | 2005
Courtney Reddrop; Randal X. Moldrich; Philip M. Beart; Mark C. Farso; Gabriel T. Liberatore; David W. Howells; Karl-Uwe Petersen; Wolf-Dieter Schleuning; Robert L. Medcalf
Background and Purpose— In contrast to tissue-type plasminogen activator (tPA), vampire bat (Desmodus rotundus) salivary plasminogen activator (desmoteplase [DSPA]) does not promote excitotoxic injury when injected directly into the brain. We have compared the excitotoxic effects of intravenously delivered tPA and DSPA and determined whether DSPA can antagonize the neurotoxic and calcium enhancing effects of tPA. Methods— The brain striatal region of wild-type c57 Black 6 mice was stereotaxically injected with N-methyl-d-Aspartate (NMDA); 24 hour later, mice received an intravenous injection of tPA or DSPA (10 mg/kg) and lesion size was assessed after 24 hours. Cell death and calcium mobilization studies were performed using cultures of primary murine cortical neurons. Results— NMDA-mediated injury was increased after intravenous administration of tPA, whereas no additional toxicity was seen after administration of DSPA. Unlike DSPA, tPA enhanced NMDA-induced cell death and the NMDA-mediated increase in intracellular calcium levels in vitro. Moreover, the enhancing effects of tPA were blocked by DSPA. Conclusions— Intravenous administration of tPA promotes excitotoxic injury, raising the possibility that leakage of tPA from the vasculature into the parenchyma contributes to brain damage. The lack of such toxicity by DSPA further encourages its use as a thrombolytic agent in the treatment of ischemic stroke.
Blood | 2012
Be’eri Niego; Roxann Freeman; Till B. Puschmann; Ann M. Turnley; Robert L. Medcalf
Tissue-type plasminogen activator (t-PA) can modulate permeability of the neurovascular unit and exacerbate injury in ischemic stroke. We examined the effects of t-PA using in vitro models of the blood-brain barrier. t-PA caused a concentration-dependent increase in permeability. This effect was dependent on plasmin formation and potentiated in the presence of plasminogen. An inactive t-PA variant inhibited the t-PA-mediated increase in permeability, whereas blockade of low-density lipoprotein receptors or exposed lysine residues resulted in similar inhibition, implying a role for both a t-PA receptor, most likely a low-density lipoprotein receptor, and a plasminogen receptor. This effect was selective to t-PA and its close derivative tenecteplase. The truncated t-PA variant reteplase had a minor effect on permeability, whereas urokinase and desmoteplase were ineffective. t-PA also induced marked shape changes in both brain endothelial cells and astrocytes. Changes in astrocyte morphology coincided with increased F-actin staining intensity, larger focal adhesion size, and elevated levels of phosphorylated myosin. Inhibition of Rho kinase blocked these changes and reduced t-PA/plasminogen-mediated increase in permeability. Hence plasmin, generated on the cell surface selectively by t-PA, modulates the astrocytic cytoskeleton, leading to an increase in blood-brain barrier permeability. Blockade of the Rho/Rho kinase pathway may have beneficial consequences during thrombolytic therapy.
Brain | 2015
Sandy R. Shultz; David K. Wright; Ping Zheng; Ryan Stuchbery; Shijie Liu; Maithili Sashindranath; Robert L. Medcalf; Leigh A. Johnston; Christopher M. Hovens; Nigel C. Jones; Terence J. O’Brien
Traumatic brain injury is a common and serious neurodegenerative condition that lacks a pharmaceutical intervention to improve long-term outcome. Hyperphosphorylated tau is implicated in some of the consequences of traumatic brain injury and is a potential pharmacological target. Protein phosphatase 2A is a heterotrimeric protein that regulates key signalling pathways, and protein phosphatase 2A heterotrimers consisting of the PR55 B-subunit represent the major tau phosphatase in the brain. Here we investigated whether traumatic brain injury in rats and humans would induce changes in protein phosphatase 2A and phosphorylated tau, and whether treatment with sodium selenate-a potent PR55 activator-would reduce phosphorylated tau and improve traumatic brain injury outcomes in rats. Ninety young adult male Long-Evans rats were administered either a fluid percussion injury or sham-injury. A proportion of rats were killed at 2, 24, and 72 h post-injury to assess acute changes in protein phosphatase 2A and tau. Other rats were given either sodium selenate or saline-vehicle treatment that was continuously administered via subcutaneous osmotic pump for 12 weeks. Serial magnetic resonance imaging was acquired prior to, and at 1, 4, and 12 weeks post-injury to assess evolving structural brain damage and axonal injury. Behavioural impairments were assessed at 12 weeks post-injury. The results showed that traumatic brain injury in rats acutely reduced PR55 expression and protein phosphatase 2A activity, and increased the expression of phosphorylated tau and the ratio of phosphorylated tau to total tau. Similar findings were seen in post-mortem brain samples from acute human traumatic brain injury patients, although many did not reach statistical significance. Continuous sodium selenate treatment for 12 weeks after sham or fluid percussion injury in rats increased protein phosphatase 2A activity and PR55 expression, and reduced the ratio of phosphorylated tau to total tau, attenuated brain damage, and improved behavioural outcomes in rats given a fluid percussion injury. Notably, total tau levels were decreased in rats 12 weeks after fluid percussion injury, and several other factors, including the use of anaesthetic, the length of recovery time, and that some brain injury and behavioural dysfunction still occurred in rats treated with sodium selenate must be considered in the interpretation of this study. However, taken together these data suggest protein phosphatase 2A and hyperphosphorylated tau may be involved in the neurodegenerative cascade of traumatic brain injury, and support the potential use of sodium selenate as a novel traumatic brain injury therapy.