Robert Lenartowski
Nicolaus Copernicus University in Toruń
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert Lenartowski.
International Journal of Developmental Neuroscience | 2011
Robert Lenartowski; Anna Goc
The activity of tyrosine hydroxylase (TH, EC 1.14.16.2) gene and protein determines the catecholamine level, which, in turn, is crucial for the organism homeostasis. The TH gene expression is regulated by near all possible regulatory mechanisms on epigenetic, transcriptional and posttranscriptional levels. Ongoing molecular characteristic of the TH gene reveals some of the cis and trans elements necessary for its proper expression but most of them especially these responsible for tissue specific expression remain still obscure. This review will focus on some aspects of TH regulation including spatial chromatin organization of the TH locus and TH gene, regulatory elements mediating basal, induced and cell‐specific activity, transcriptional elongation, alternative TH RNA processing, and the regulation of TH RNA stability in the cell.
Neuroscience Letters | 2002
Robert Lenartowski; Anna Goc
Association of the human tyrosine hydroxylase (TH) gene with the nuclear matrix was studied using bovine matrices from tissues differing in expression of the gene. An in vitro binding assay was performed with fragments encompassing the -2300/+2300 region of the human TH gene. All fragments bound to the nuclear matrix from the adrenal medulla but none bound to that from the liver. A computer search of the sequenced part of the studied region revealed putative matrix attachment regions (S/MAR) - one in the promoter and two in the first intron. The (TCAT)(n) microsatellite repeat included in one of the intronic S/MARs seems to influence the binding potential of the human TH gene to the nuclear matrices.
Planta | 2009
Marta Lenartowska; Robert Lenartowski; Dariusz Jan Smoliński; Bogdan Wróbel; Janusz Niedojadło; Krzysztof Jaworski; Elżbieta Bednarska
In this report, the distributions of calreticulin (CRT) and its transcripts in Haemanthus pollen, pollen tubes, and somatic cells of the hollow pistil were studied. Immunoblot analysis of protein extracts from mature anthers, dry and germinated pollen, growing pollen tubes, and unpollinated/pollinated pistils revealed a strong expression of CRT. Both in vitro and in situ studies confirmed the presence of CRT mRNA and protein in pollen/pollen tubes and somatic cells of the pistil transmitting tract. The co-localization of these molecules in ER of these cells suggests that the rough ER is a site of CRT translation. In the pistil, accumulation of the protein in pollen tubes, transmitting tract epidermis (tte), and micropylar cells of the ovule (mc) was correlated with the increased level of exchangeable calcium. Therefore, CRT as a Ca2+-binding/buffering protein, may be involved in mechanism of regulation calcium homeostasis in these cells. The functional role of the protein in pollen–pistil interactions, apart from its postulated function in cellular Ca2+ homeostasis, is discussed.
Planta | 2017
Anna Suwińska; Piotr Wasąg; Przemysław Zakrzewski; Marta Lenartowska; Robert Lenartowski
AbstractMain conclusionCalreticulin is involved in stabilization of the tip-focused Ca2+gradient and the actin cytoskeleton arrangement and function that is required for several key processes drivingPetuniapollen tube tip growth. Although the precise mechanism is unclear, stabilization of a tip-focused calcium (Ca2+) gradient seems to be critical for pollen germination and pollen tube growth. We hypothesize that calreticulin (CRT), a Ca2+-binding/buffering chaperone typically residing in the lumen of the endoplasmic reticulum (ER) of eukaryotic cells, is an excellent candidate to fulfill this role. We previously showed that in Petunia pollen tubes growing in vitro, CRT is translated on ER membrane-bound ribosomes that are abundant in the subapical zone of the tube, where CRT’s Ca2+-buffering and chaperone activities might be particularly required. Here, we sought to determine the function of CRT using small interfering RNA (siRNA) to, for the first time in pollen tubes growing in vitro, knockdown expression of a gene. We demonstrate that siRNA-mediated post-transcriptional silencing of Petunia hybrida CRT gene (PhCRT) expression strongly impairs pollen tube growth, cytoplasmic zonation, actin cytoskeleton organization, and the tip-focused Ca2+ gradient. Moreover, reduction of CRT alters the localization and disturbs the structure of the ER in abnormally elongating pollen tubes. Finally, cytoplasmic streaming is inhibited, and most of the pollen tubes rupture. Our data clearly show an interplay between CRT, Ca2+ gradient, actin-dependent cytoplasmic streaming, organelle positioning, and vesicle trafficking during pollen tube elongation. Thus, we suggest that CRT functions in Petunia pollen tube growth by stabilizing Ca2+ homeostasis and acting as a chaperone to assure quality control of glycoproteins passing through the ER.
Planta | 2015
Robert Lenartowski; Anna Suwińska; Marta Lenartowska
Calcium (Ca2+) plays essential roles in plant sexual reproduction, but the sites and the mechanism of Ca2+ mobile storage during pollen–pistil interactions have not been fully defined. Because the Ca2+-buffering protein calreticulin (CRT) is able to bind and sequester Ca2+, it can serve as a mobile intracellular store of easily releasable Ca2+ and control its local concentration within the cytoplasm. Our previous studies showed an enhanced expression of Petunia hybrida CRT gene (PhCRT) during pistil transmitting tract maturation, pollen germination and tube outgrowth on the stigma, gamete fusion, and early embryogenesis. Here, we demonstrate that elevated expression of CRT results in the accumulation of this protein in response to anthesis, pollination, sperm cells deposition within the receptive synergid and fertilization, when the level of exchangeable Ca2+ changes dynamically. CRT localizes mainly to the endoplasmic reticulum and Golgi compartments in the pistil transmitting tract cells, germinated pollen/tubes, and sporophytic/gametophytic cells of the ovule and corresponds with loosely bound Ca2+. Additionally, the immunogold research shows, for the first time, highly selective CRT distribution in specific nuclear sub-domains. On the basis of our results, we discuss the possible functions of CRT with respect to the critical role of Ca2+ homeostasis during key events of the multi-step process of generative reproduction in angiosperms.
Plant Cell Reports | 2015
Anna Suwińska; Robert Lenartowski; Dariusz Jan Smoliński; Marta Lenartowska
Key messageIn germinating pollen grains and growing pollen tubes, CRT is translated on ER membrane-bound ribosomes in the regions where its activity is required for stabilization of tip-focused Ca2+gradient.AbstractPollen tube growth requires coordination of signaling, exocytosis, and actin cytoskeletal organization. Many of these processes are thought to be controlled by finely tuned regulation of cytoplasmic Ca2+ in discrete regions of the tube cytoplasm. Most notably, a mechanism must function to maintain a steep gradient of Ca2+ that exists at the tip of growing pollen tube. Several pieces of evidence point to calreticulin (CRT) as a key Ca2+-binding/-buffering protein involved in pollen germination and pollen tube growth. We previously hypothesized that in germinating pollen and growing tubes, CRT is translated on the ribosomes associated with endoplasmic reticulum (ER) in the regions where its activity might be required. In this report, we have addressed this idea by identifying the sites where CRT mRNA, CRT protein, 18S rRNA, and rough ER are localized in Petunia pollen tubes. We observed all four components in the germinal aperture of pollen grains and in subapical regions of elongating tubes. These results seem to support our idea that CRT is translated on ER membrane-bound ribosomes during pollen germination and pollen tube growth. In elongated pollen tubes, we found CRT mainly localized in the subapical zone, where ER and Golgi stacks are abundant. In eukaryotic cells, these organelles serve as mobile intracellular stores of easily releasable Ca2+, which can be buffered by proteins such as CRT. Therefore, we postulate that subapical-localized CRT is involved in pollen tube growth by maintaining the stable tip-focused Ca2+ gradient and thus modulating local Ca2+ concentration within the tube cytoplasm.
Protoplasma | 2018
Piotr Wasąg; Anna Suwińska; Przemysław Zakrzewski; Jakub Walczewski; Robert Lenartowski; Marta Lenartowska
Calcium (Ca2+) plays essential roles in generative reproduction of angiosperms, but the sites and mechanisms of Ca2+ storage and mobilization during pollen-pistil interactions have not been fully defined. Both external and internal Ca2+ stores are likely important during male gametophyte communication with the sporophytic and gametophytic cells within the pistil. Given that calreticulin (CRT), a Ca2+-buffering protein, is able to bind Ca2+ reversibly, it can serve as a mobile store of easily releasable Ca2+ (so called an exchangeable Ca2+) in eukaryotic cells. CRT has typical endoplasmic reticulum (ER) targeting and retention signals and resides primarily in the ER. However, localization of this protein outside the ER has also been revealed in both animal and plant cells, including Golgi/dictyosomes, nucleus, plasma membrane/cell surface, plasmodesmata, and even extracellular matrix. These findings indicate that CRT may function in a variety of different cell compartments and specialized structures. We have recently shown that CRT is highly expressed and accumulated in the ER of plant cells involved in pollen-pistil interactions in Petunia, and we proposed an essential role for CRT in intracellular Ca2+ storage and mobilization during the key reproductive events. Here, we demonstrate that both CRT and exchangeable Ca2+ are localized in the intra/extracellular peripheries of highly specialized plant cells, such as the pistil transmitting tract cells, pollen tubes, nucellus cells surrounding the embryo sac, and synergids. Based on our present results, we propose that extracellularly located CRT is also involved in Ca2+ storage and mobilization during sexual reproduction of angiosperms.
Histochemistry and Cell Biology | 2017
Przemysław Zakrzewski; Robert Lenartowski; Maria Jolanta Redowicz; Kathryn G. Miller; Marta Lenartowska
Myosin VI (MVI) is a versatile actin-based motor protein that has been implicated in a variety of different cellular processes, including endo- and exocytic vesicle trafficking, Golgi morphology, and actin structure stabilization. A role for MVI in crucial actin-based processes involved in sperm maturation was demonstrated in Drosophila. Because of the prominence and importance of actin structures in mammalian spermiogenesis, we investigated whether MVI was associated with actin-mediated maturation events in mammals. Both immunofluorescence and ultrastructural analyses using immunogold labeling showed that MVI was strongly linked with key structures involved in sperm development and maturation. During the early stage of spermiogenesis, MVI is associated with the Golgi and with coated and uncoated vesicles, which fuse to form the acrosome. Later, as the acrosome spreads to form a cap covering the sperm nucleus, MVI is localized to the acroplaxome, an actin-rich structure that anchors the acrosome to the nucleus. Finally, during the elongation/maturation phase, MVI is associated with the actin-rich structures involved in nuclear shaping: the acroplaxome, manchette, and Sertoli cell actin hoops. Since this is the first report of MVI expression and localization during mouse spermiogenesis and MVI partners in developing sperm have not yet been identified, we discuss some probable roles for MVI in this process. During early stages, MVI is hypothesized to play a role in Golgi morphology and function as well as in actin dynamics regulation important for attachment of developing acrosome to the nuclear envelope. Next, the protein might also play anchoring roles to help generate forces needed for spermatid head elongation. Moreover, association of MVI with actin that accumulates in the Sertoli cell ectoplasmic specialization and other actin structures in surrounding cells suggests additional MVI functions in spermatid movement across the seminiferous epithelium and in sperm release.
Nucleus | 2018
Lukasz Majewski; Jolanta Nowak; Magdalena Sobczak; Olena Karatsai; Serhiy Havrylov; Robert Lenartowski; Małgorzata Suszek; Marta Lenartowska; Maria Jolanta Redowicz
ABSTRACT Myosin VI (MVI) is a unique actin-based motor protein moving towards the minus end of actin filaments, in the opposite direction than other known myosins. Besides well described functions of MVI in endocytosis and maintenance of Golgi apparatus, there are few reports showing its involvement in transcription. We previously demonstrated that in neurosecretory PC12 cells MVI was present in the cytoplasm and nucleus, and its depletion caused substantial inhibition of cell migration and proliferation. Here, we show an increase in nuclear localization of MVI upon cell stimulation, and identification of potential nuclear localization (NLS) and nuclear export (NES) signals within MVI heavy chain. These signals seem to be functional as the MVI nuclear presence was affected by the inhibitors of nuclear import (ivermectin) and export (leptomycin B). In nuclei of stimulated cells, MVI colocalized with active RNA polymerase II, BrUTP-containing transcription sites and transcription factor SP1 as well as SC35 and PML proteins, markers of nuclear speckles and PML bodies, respectively. Mass spectrometry analysis of samples of a GST-pull-down assay with the MVI tail domain as a “bait” identified several new potential MVI binding partners. Among them are proteins involved in transcription and post-transcriptional processes. We confirmed interaction of MVI with heterogeneous nuclear ribonucleoprotein U (hnRNPU) and nucleolin, proteins involved in pre-mRNA binding and transport, and nucleolar function, respectively. Our data provide an insight into mechanisms of involvement of MVI in nuclear processes via interaction with nuclear proteins and support a notion for important role(s) for MVI in gene expression.
Plant Cell Reports | 2015
Katarzyna Niedojadło; Robert Lenartowski; Marta Lenartowska; Elżbieta Bednarska-Kozakiewicz
Key messageCalreticulin expression is upregulated during sexual reproduction ofHyacinthus orientalis, and the protein is localized both in the cytoplasm and a highly specialized cell wall within the female gametophyte.AbstractSeveral evidences indicate calreticulin (CRT) as an important calcium (Ca2+)-binding protein that is involved in the generative reproduction of higher plants, including both pre-fertilization and post-fertilization events. Because CRT is able to bind and sequester exchangeable Ca2+, it can serve as a mobile intracellular store of easily releasable Ca2+ and control its local cytosolic concentrations in the embryo sac. This phenomenon seems to be essential during the late progamic phase, gamete fusion, and early embryogenesis. In this report, we demonstrate the differential expression of CRT within Hyacinthus female gametophyte cells before and during anthesis, during the late progamic phase when the pollen tube enters the embryo sac, and at the moment of fertilization and zygote/early endosperm activation. CRT mRNA and the protein localize mainly to the endoplasmic reticulum (ER) and Golgi compartments of the cells, which are involved in sexual reproduction events, such as those in sister synergids, the egg cell, the central cell, zygote and the developing endosperm. Additionally, immunogold research demonstrates selective CRT distribution in the filiform apparatus (FA), a highly specific component of the synergid cell wall. In the light of our previous data showing the total transcriptional activity of the Hyacinthus female gametophyte and the results presented here, we discuss the possible functions of CRT with respect to the critical role of Ca2+ homeostasis during key events of sexual plant reproduction. Moreover, we propose that the elevated expression of CRT within the female gametophyte is a universal phenomenon in the cells involved in double fertilization in higher plants.