Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Loos is active.

Publication


Featured researches published by Robert Loos.


Toxicological Sciences | 2014

Mixtures of Chemical Pollutants at European Legislation Safety Concentrations: How Safe Are They?

Raquel N. Carvalho; Augustine Arukwe; Selim Ait-Aissa; Anne Bado-Nilles; Stefania Balzamo; Anders Baun; Shimshon Belkin; Ludek Blaha; François Brion; Daniela Conti; Nicolas Creusot; Yona J. Essig; Valentina Elisabetta Viviana Ferrero; Vesna Flander-Putrle; Maria Fürhacker; Regina Grillari-Voglauer; Christer Hogstrand; Adam Jonáš; Joubert Banjop Kharlyngdoh; Robert Loos; Anne-Katrine Lundebye; Carina Modig; Per-Erik Olsson; Smitha Pillai; Natasa Polak; Monica Potalivo; Wilfried Sanchez; Andrea Schifferli; Kristin Schirmer; Susanna Sforzini

The risk posed by complex chemical mixtures in the environment to wildlife and humans is increasingly debated, but has been rarely tested under environmentally relevant scenarios. To address this issue, two mixtures of 14 or 19 substances of concern (pesticides, pharmaceuticals, heavy metals, polyaromatic hydrocarbons, a surfactant, and a plasticizer), each present at its safety limit concentration imposed by the European legislation, were prepared and tested for their toxic effects. The effects of the mixtures were assessed in 35 bioassays, based on 11 organisms representing different trophic levels. A consortium of 16 laboratories was involved in performing the bioassays. The mixtures elicited quantifiable toxic effects on some of the test systems employed, including i) changes in marine microbial composition, ii) microalgae toxicity, iii) immobilization in the crustacean Daphnia magna, iv) fish embryo toxicity, v) impaired frog embryo development, and vi) increased expression on oxidative stress-linked reporter genes. Estrogenic activity close to regulatory safety limit concentrations was uncovered by receptor-binding assays. The results highlight the need of precautionary actions on the assessment of chemical mixtures even in cases where individual toxicants are present at seemingly harmless concentrations.


Water Research | 2010

Occurrence of polar organic contaminants in the dissolved water phase of the Danube River and its major tributaries using SPE-LC-MS2 analysis

Robert Loos; Giovanni Locoro; Serafino Contini

Polar water-soluble organic contaminants were analysed in the dissolved liquid water phase of river water samples from the Danube River and its major tributaries (within the Joint Danube Survey 2). Analyses were performed by solid-phase extraction (SPE) followed by triple-quadrupole liquid chromatography mass spectrometry (LC-MS(2)). In total, 34 different polar organic compounds were screened. Focus was given on pharmaceutical compounds (such as ibuprofen, diclofenac, sulfamethoxazole, carbamazepine), pesticides and their degradation products (e.g. bentazone, 2,4-D, mecoprop, atrazine, terbutylazine, desethylterbutylazine), perfluorinated acids (PFOS; PFOA), and endocrine disrupting compounds (nonylphenol, NPE(1)C, bisphenol A, estrone). The most relevant polar compounds identified in the Danube River basin in terms of frequency of detection, persistency, and concentration levels were 1H-benzotriazole (median concentration 185 ng/L), caffeine (87 ng/L), tolyltriazole (73 ng/L), nonylphenoxy acetic acid (49 ng/L), carbamazepine (33 ng/L), 4-nitrophenol (29 ng/L), 2,4-dinitrophenol (19 ng/L), PFOA (17 ng/L), sulfamethoxazole (16 ng/L), desethylatrazine (11 ng/L), and 2,4-D (10 ng/L). The highest contamination levels were found in the area around Budapest and in the tributary rivers Arges (Romania), Timok (Bulgaria), Rusenski Lom (Bulgaria), and Velika Morava (Serbia).


Journal of Chromatography A | 2009

Sucralose screening in European surface waters using a solid-phase extraction-liquid chromatography-triple quadrupole mass spectrometry method.

Robert Loos; Bernd Manfred Gawlik; Kristin Boettcher; Giovanni Locoro; Serafino Contini; Giovanni Bidoglio

An analytical method was developed for the analysis of sucralose, a persistent chlorinated calorie-free sugar substitute, in surface waters. The method is based on solid-phase extraction (SPE) of 400mL water using Oasis HLB (Waters) adsorber material, followed by negative electrospray ionization (ESI) triple quadrupole LC-MS-MS detection. Quantification was performed by external calibration, as well as by isotope dilution with deuterated sucralose d6 internal standard. Extraction with Oasis HLB, a polymeric adsorbent suited for polar compounds, was much more efficient at neutral pH than at pH 3; a recovery of 62+/-9% (n=6; determined at 1microg/L) could be achieved. Strong ion suppression caused by matrix substances was observed for sucralose in the SPE extracts. The analysis of 120 river surface water samples from 27 European countries showed that sucralose, which is in use in Europe since beginning 2005, can be found in the aquatic environment, at concentrations up to 1microg/L. Sucralose was predominately found in samples from the UK, Belgium, the Netherlands, France, Switzerland, Spain, Italy, Norway, and Sweden, suggesting an increased use of the substance in Western Europe.


Journal of Chromatography A | 2009

Needs for reliable analytical methods for monitoring chemical pollutants in surface water under the European Water Framework Directive

Peter Lepom; Bruce Brown; Georg Hanke; Robert Loos; Philippe Quevauviller; Jan Wollgast

The state of the art in monitoring chemical pollutants to assess water quality status according to Water Framework Directive (WFD) and the challenges associated with it have been reviewed. The article includes information on environmental quality standards (EQSs) proposed to protect the aquatic environment and humans against hazardous substances and the resulting monitoring requirements. Furthermore, minimum performance criteria for analytical methods and quality assurance issues have been discussed. The result of a survey of existing standard methods with a focus on European (EN) and international standards (ISO) for the analysis of chemical pollutants in water is reported and the applicability of those methods for the purpose of compliance checking with EQSs is examined. Approximately 75% of the 41 hazardous substances for which Europe-wide EQSs have been proposed can be reliably monitored in water with acceptable uncertainty when applying existing standardised methods. Monitoring in water encounters difficulties for some substances, e.g., short-chain chlorinated paraffins (SCCPs), polybrominated diphenyl ethers (PBDEs), tributyltin compounds, certain organochlorine pesticides and six-ring PAHs, mainly due to a lack of validated, sufficiently sensitive methods that are applicable in routine laboratory conditions. As WFD requires monitoring of unfiltered samples for organic contaminants more attention needs to be paid to the distribution of chemical pollutants between suspended particulate matter and the liquid phase. Methods allowing complete extraction of organic contaminants from whole water samples are required. From a quality assurance point of view, there is a need to organise interlaboratory comparisons specifically designed to the requirements of WFD (concentrations around EQSs, representative water samples) as well as field trials to compare sampling methodologies. Additional analytical challenges may arise when Member States have identified their river basin specific pollutants and after revision of the list of priority substances.


Journal of Chromatography A | 1999

Analysis of atrazine, terbutylazine and their N-dealkylated chloro and hydroxy metabolites by solid-phase extraction and gas chromatography–mass spectrometry and capillary electrophoresis–ultraviolet detection

Robert Loos; Reinhard Niessner

Solid-phase extraction (SPE) with the styrene-divinylbenzene adsorbent LiChrolut EN was investigated for the extraction of the s-triazine herbicides atrazine and terbutylazine, their polar N-dealkylated degradation products deethylatrazine (DEA), deisopropylatrazine (DIA) and deethylterbutylazine (DET) and for the hydrophilic hydroxytriazine degradation products (HTDPs) hydroxyatrazine (HA), hydroxyterbutylazine (HT), deethylhydroxyatrazine (DEHA), deisopropylhydroxyatrazine (DIHA) and deethyldeisopropylhydroxyatrazine (ameline). The optimum pH value for the extraction of the HTDPs from fortified tap water at 2 micrograms/l is 3.0. Recovery values with 200 mg LiChrolut EN are > 80% for HA, HT, DEHA and 30% for DIHA from 200 ml spiked tap and river water. Atrazine, terbutylazine, DEA, DIA and DET are quantitatively extracted by LiChrolut EN. The chlorotriazines are analyzed by GC-MS and the HTDPs by capillary zone electrophoresis (CZE) and micellar electrokinetic capillary chromatography (MECC) with an acetate buffer at pH 4.6 or a sodium borate-sodium dodecyl sulfate buffer at pH 9.3. The combined method of SPE enrichment and CE analysis allows the determination of HTDPs in the low microgram/l range.


Journal of Environmental Monitoring | 2003

Multi-component analysis of polar water pollutants using sequential solid-phase extraction followed by LC-ESI-MS

Robert Loos; Georg Hanke; Steven J. Eisenreich

A multi-component screening analysis method for polar to medium-polar water pollutants was developed. Sample clean-up and group separation are performed by sequential solid-phase extraction (SSPE) using automated SPE with C18 and polymeric sorbent materials. Analyses are performed by liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) using a single-quadrupole instrument. More than 90 priority compounds of environmental interest--comprising the most important chemical and substance classes: phenols, carboxylic acids, aromatic sulfonates, aromatic amines, pharmaceuticals, surfactants, dyes, and pesticides--have been chosen for the experiments. The compounds are divided by the SSPE procedure into 3 different polarity classes. The extraction recoveries were determined in the 3 fractions for every single substance, and were for most of the analytes in the range of 50-100%. A mixture of hexane-dichloromethane was used for the elution of nonpolar compounds like alkylphenols from C18. Methanol and acetone are well suited for the elution of more polar substances. The limits of detection (LODs) were determined for all compounds. Effluents from municipal and industrial wastewater treatment plants (WWTPs) treating waste water from textile industries; and the corresponding receiving waters (rivers and lakes) have been analysed with the developed method. Urban and industrial pollution was observed in rivers and streams in the area north of Milan, Italy. In the water samples different phenols (nitrophenols, bisphenol A, nonylphenol), alkylphenol ethoxylate surfactants, their metabolites with endocrine disrupting potential, aromatic sulfonates, linear alkylbenzenesulfonate surfactants, dyes, pesticides, pharmaceuticals, and a dichlorobenzidine compound were identified.


Journal of Chromatography A | 1998

Analysis of aromatic sulfonates in water by solid-phase extraction and capillary electrophoresis

Robert Loos; Reinhard Niessner

The separation of 14 different aromatic sulfonates of environmental concern by capillary (zone) electrophoresis (CZE) is presented. A new off-line solid-phase extraction (SPE) enrichment procedure, that is compatible with CE analysis, was developed, using the styrene-divinylbenzene adsorbent LiChrolut EN. The combined method of SPE and CE allows the determination of aromatic sulfonates in water samples in the low microgram/l range. Separations are performed with a simple sodium borate buffer at pH 9.3. Analytes are detected by UV absorbance and fluorescence emission with a Xe-lamp excitation source, and both principles are compared. The recoveries for most of the sulfonates are > 70% for the extraction from spiked tap and river water. The average method precision is < 20% for replicate analyses. Very hydrophilic sulfonates cannot be extracted by this method. The detection limit of the combined method of SPE enrichment and CE analysis is approximately 0.1 microgram/l for 200-ml water samples. The performance of the method was checked with the analysis of river and contaminated seepage water.


Archive | 2012

EU Wide Monitoring Survey on Waste Water Treatment Plant Effluents

Robert Loos; Raquel N. Carvalho; Sara Comero; Diana C. António; Michela Ghiani; Teresa Lettieri; Giovanni Locoro; Bruno Paracchini; Simona Tavazzi; Bernd Manfred Gawlik; Luděk Bláha; Barbora Jarošová; Stefan Voorspoels; David Schwesig; Peter Haglund; Jerker Fick; Oliver Gans

The main objective of this research project (“Fate Sees”) was to verify on a European-wide scale the occurrence of as many as possible organic and inorganic chemical contaminants in WWTP effluents, in order to get a European overview. In the year 2010, effluents from 90 European waste water treatment plants (WWTPs) were collected and analysed in total for 160 organic chemicals and 20 inorganic trace elements. The analyses were complemented by applying also effect-based monitoring approaches aiming at estrogenicity and dioxin-like toxicity analysed by in vitro reporter gene bioassays, and yeast and diatom culture acute toxicity optical bioassays.


Science of The Total Environment | 2014

Looking for protein expression signatures in European eel peripheral blood mononuclear cells after in vivo exposure to perfluorooctane sulfonate and a real world field study.

Kathleen Roland; Patrick Kestemont; Robert Loos; Simona Tavazzi; Bruno Paracchini; Claude Belpaire; Marc Dieu; Martine Raes; Frédéric Silvestre

The decline of European eel population can be attributed to many factors such as pollution by xenobiotics present in domestic and industrial effluents. Perfluorooctane sulfonate (PFOS) is a ubiquitous compound of a particular concern in Europe. PFOS can reach high concentrations in tissues of organisms and many toxic effects have been reported in fish. This study aimed at evaluating the toxicological effects of PFOS in European eel peripheral blood mononuclear cells (PBMCs) at the protein expression level. To identify proteins whose expression was modified by PFOS, we performed a proteomic analysis on the post-nuclear fraction of PBMCs after a chronic exposure (28 days) of yellow eels to zero, 1 or 10 μg/L PFOS. This in vivo study was completed by a proteomic field study on eels sampled in Belgian rivers presenting different PFOS pollution degrees. Proteins were separated by two-dimensional in-gel electrophoresis (2D-DIGE) to compare the post-nuclear fraction of PBMCs from the reference group with cells from fish exposed to the pollutant of interest. On the 28 spots that were significantly (p < 0.05; ANOVA followed by a Dunnett post-hoc test) affected by PFOS in the in vivo experiment, a total of 17 different proteins were identified using nano-LC ESI-MS/MS and the Peptide and Protein Prophet of Scaffold software. In the field experiment, 18 significantly (p < 0.05; ANOVA followed by Dunnetts test) affected spots conducted to the identification of 16 different proteins. Interestingly, only three proteins were found in common between in vivo and in situ experiments: plastin-2, alpha-enolase and glyceraldehyde 3-phosphate dehydrogenase. Comparing the results with a previous study, plastin-2 and alpha-enolase were also been found to be affected after in vitro exposure of PBMCs during 48 h to either 10 μg or 1 mg PFOS/L. Potential use of these proteins as biomarkers of PFOS exposure in European eel could indicate early warning signals.


Environment International | 2014

Comparing measured and modelled PFOS concentrations in a UK freshwater catchment and estimating emission rates

Mark Earnshaw; Alexander G. Paul; Robert Loos; Simona Tavazzi; Bruno Paracchini; Martin Scheringer; Konrad Hungerbühler; Kevin C. Jones; Andrew J. Sweetman

The lifecycle, sources and fate of perfluorooctane sulfonate (PFOS) continue to generate scientific and political interest, particularly since PFOS was listed by the Stockholm Convention and largely restricted in Europe. It continues to be detected in aquatic environments, with only limited studies into the on-going sources. This paper explores PFOS emissions discharged by the general population into a small catchment comprising two rivers in the UK. A sampling campaign was undertaken to improve our understanding of population-derived PFOS sources from sewage treatment plants (STPs) and in rivers. A corresponding modelling exercise allowed an emission estimate of 13μg/day/per capita to be derived for the Aire and Calder rivers. PFOS emission was linked to STP discharges bylinear regression of measured and modelled concntrations (R(2)=0.49-0.85). The model was able to accurately estimate the spatial trends of PFOS in the rivers, while predicted concentrations were within a factor of three based on per capita emission values taken from the literature. Measured PFOS concentrations in rivers suggested that emissions from STPs are partially dependent on treatment type, where plants with secondary or tertiary treatment such as activated sludge processes emit less PFOS, possibly due to increased partitioning and retention. With refinements based on the type of treatment at each STP, predictions were further improved. The total PFOS mass discharged annually via rivers from the UK has been estimated to be between 215 and 310kg, based on the per capita emission range derived in this study.

Collaboration


Dive into the Robert Loos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge