Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Lyle is active.

Publication


Featured researches published by Robert Lyle.


Nature Reviews Genetics | 2004

Chromosome 21 and Down syndrome: from genomics to pathophysiology

Robert Lyle; Emmanouil T. Dermitzakis; Alexandre Reymond; Samuel Deutsch

The sequence of chromosome 21 was a turning point for the understanding of Down syndrome. Comparative genomics is beginning to identify the functional components of the chromosome and that in turn will set the stage for the functional characterization of the sequences. Animal models combined with genome-wide analytical methods have proved indispensable for unravelling the mysteries of gene dosage imbalance.


Nature | 2002

Numerous potentially functional but non-genic conserved sequences on human chromosome 21.

Emmanouil T. Dermitzakis; Alexandre Reymond; Robert Lyle; Nathalie Scamuffa; Catherine Ucla; Samuel Deutsch; Brian J. Stevenson; Volker Flegel; Philipp Bucher; C. Victor Jongeneel

The use of comparative genomics to infer genome function relies on the understanding of how different components of the genome change over evolutionary time. The aim of such comparative analysis is to identify conserved, functionally transcribed sequences such as protein-coding genes and non-coding RNA genes, and other functional sequences such as regulatory regions, as well as other genomic features. Here, we have compared the entire human chromosome 21 with syntenic regions of the mouse genome, and have identified a large number of conserved blocks of unknown function. Although previous studies have made similar observations, it is unknown whether these conserved sequences are genes or not. Here we present an extensive experimental and computational analysis of human chromosome 21 in an effort to assign function to sequences conserved between human chromosome 21 (ref. 8) and the syntenic mouse regions. Our data support the presence of a large number of potentially functional non-genic sequences, probably regulatory and structural. The integration of the properties of the conserved components of human chromosome 21 to the rapidly accumulating functional data for this chromosome will improve considerably our understanding of the role of sequence conservation in mammalian genomes.


Cell Reports | 2014

Endogenous RNAs Modulate MicroRNA Sorting to Exosomes and Transfer to Acceptor Cells

Mario Leonardo Squadrito; Caroline Baer; Frédéric Burdet; Claudio Maderna; Gregor D. Gilfillan; Robert Lyle; Mark Ibberson; Michele De Palma

MicroRNA (miRNA) transfer via exosomes may mediate cell-to-cell communication. Interestingly, specific miRNAs are enriched in exosomes in a cell-type-dependent fashion. However, the mechanisms whereby miRNAs are sorted to exosomes and the significance of miRNA transfer to acceptor cells are unclear. We used macrophages and endothelial cells (ECs) as a model of heterotypic cell communication in order to investigate both processes. RNA profiling of macrophages and their exosomes shows that miRNA sorting to exosomes is modulated by cell-activation-dependent changes of miRNA target levels in the producer cells. Genetically perturbing the expression of individual miRNAs or their targeted transcripts promotes bidirectional miRNA relocation from the cell cytoplasm/P bodies (sites of miRNA activity) to multivesicular bodies (sites of exosome biogenesis) and controls miRNA sorting to exosomes. Furthermore, the use of Dicer-deficient cells and reporter lentiviral vectors (LVs) for miRNA activity shows that exosomal miRNAs are transferred from macrophages to ECs to detectably repress targeted sequences.


Nature | 2002

Human chromosome 21 gene expression atlas in the mouse

Alexandre Reymond; Valeria Marigo; Murat B. Yaylaoglu; Antonio Leoni; Catherine Ucla; Nathalie Scamuffa; Cristina Caccioppoli; Emmanouil T. Dermitzakis; Robert Lyle; Sandro Banfi; Gregor Eichele; Andrea Ballabio

Genome-wide expression analyses have a crucial role in functional genomics. High resolution methods, such as RNA in situ hybridization provide an accurate description of the spatiotemporal distribution of transcripts as well as a three-dimensional ‘in vivo’ gene expression overview. We set out to analyse systematically the expression patterns of genes from an entire chromosome. We chose human chromosome 21 because of the medical relevance of trisomy 21 (Downs syndrome). Here we show the expression analysis of all identifiable murine orthologues of human chromosome 21 genes (161 out of 178 confirmed human genes) by RNA in situ hybridization on whole mounts and tissue sections, and by polymerase chain reaction with reverse transcription on adult tissues. We observed patterned expression in several tissues including those affected in trisomy 21 phenotypes (that is, central nervous system, heart, gastrointestinal tract, and limbs). Furthermore, statistical analysis suggests the presence of some regions of the chromosome with genes showing either lack of expression or, to a lesser extent, co-expression in specific tissues. This high resolution expression ‘atlas’ of an entire human chromosome is an important step towards the understanding of gene function and of the pathogenetic mechanisms in Downs syndrome.


European Journal of Human Genetics | 2009

Genotype-phenotype correlations in Down syndrome identified by array CGH in 30 cases of partial trisomy and partial monosomy chromosome 21

Robert Lyle; Frédérique Béna; Sarantis Gagos; Corinne Gehrig; Gipsy Lopez; Albert Schinzel; James Lespinasse; Armand Bottani; Sophie Dahoun; Laurence Taine; Martine Doco-Fenzy; Pascale Cornillet-Lefebvre; Anna Pelet; Stanislas Lyonnet; Annick Toutain; Laurence Colleaux; Jürgen Horst; Ingo Kennerknecht; Nobuaki Wakamatsu; Maria Descartes; Judy Franklin; Lina Florentin-Arar; Sophia Kitsiou; Emilie Aı̈t Yahya-Graison; Maher Costantine; Pierre-Marie Sinet; Jean Maurice Delabar

Down syndrome (DS) is one of the most frequent congenital birth defects, and the most common genetic cause of mental retardation. In most cases, DS results from the presence of an extra copy of chromosome 21. DS has a complex phenotype, and a major goal of DS research is to identify genotype–phenotype correlations. Cases of partial trisomy 21 and other HSA21 rearrangements associated with DS features could identify genomic regions associated with specific phenotypes. We have developed a BAC array spanning HSA21q and used array comparative genome hybridization (aCGH) to enable high-resolution mapping of pathogenic partial aneuploidies and unbalanced translocations involving HSA21. We report the identification and mapping of 30 pathogenic chromosomal aberrations of HSA21 consisting of 19 partial trisomies and 11 partial monosomies for different segments of HSA21. The breakpoints have been mapped to within ∼85 kb. The majority of the breakpoints (26 of 30) for the partial aneuploidies map within a 10-Mb region. Our data argue against a single DS critical region. We identify susceptibility regions for 25 phenotypes for DS and 27 regions for monosomy 21. However, most of these regions are still broad, and more cases are needed to narrow down the phenotypic maps to a reasonable number of candidate genomic elements per phenotype.


American Journal of Human Genetics | 2006

Submicroscopic Deletion in Patients with Williams-Beuren Syndrome Influences Expression Levels of the Nonhemizygous Flanking Genes

Giuseppe Merla; Cédric Howald; Charlotte N. Henrichsen; Robert Lyle; Carine Wyss; Marie-Thérèse Zabot; Alexandre Reymond

Genomic imbalance is a common cause of phenotypic abnormalities. We measured the relative expression level of genes that map within the microdeletion that causes Williams-Beuren syndrome and within its flanking regions. We found, unexpectedly, that not only hemizygous genes but also normal-copy neighboring genes show decreased relative levels of expression. Our results suggest that not only the aneuploid genes but also the flanking genes that map several megabases away from a genomic rearrangement should be considered possible contributors to the phenotypic variation in genomic disorders.


American Journal of Human Genetics | 2007

Natural Gene-Expression Variation in Down Syndrome Modulates the Outcome of Gene-Dosage Imbalance

Paola Prandini; Samuel Deutsch; Robert Lyle; Maryline Gagnebin; Celine Delucinge Vivier; Mauro Delorenzi; Corinne Gehrig; Patrick Descombes; Stephanie L. Sherman; Franca Dagna Bricarelli; Chiara Baldo; Antonio Novelli; Bruno Dallapiccola

Down syndrome (DS) is characterized by extensive phenotypic variability, with most traits occurring in only a fraction of affected individuals. Substantial gene-expression variation is present among unaffected individuals, and this variation has a strong genetic component. Since DS is caused by genomic-dosage imbalance, we hypothesize that gene-expression variation of human chromosome 21 (HSA21) genes in individuals with DS has an impact on the phenotypic variability among affected individuals. We studied gene-expression variation in 14 lymphoblastoid and 17 fibroblast cell lines from individuals with DS and an equal number of controls. Gene expression was assayed using quantitative real-time polymerase chain reaction on 100 and 106 HSA21 genes and 23 and 26 non-HSA21 genes in lymphoblastoid and fibroblast cell lines, respectively. Surprisingly, only 39% and 62% of HSA21 genes in lymphoblastoid and fibroblast cells, respectively, showed a statistically significant difference between DS and normal samples, although the average up-regulation of HSA21 genes was close to the expected 1.5-fold in both cell types. Gene-expression variation in DS and normal samples was evaluated using the Kolmogorov-Smirnov test. According to the degree of overlap in expression levels, we classified all genes into 3 groups: (A) nonoverlapping, (B) partially overlapping, and (C) extensively overlapping expression distributions between normal and DS samples. We hypothesize that, in each cell type, group A genes are the most dosage sensitive and are most likely involved in the constant DS traits, group B genes might be involved in variable DS traits, and group C genes are not dosage sensitive and are least likely to participate in DS pathological phenotypes. This study provides the first extensive data set on HSA21 gene-expression variation in DS and underscores its role in modulating the outcome of gene-dosage imbalance.


Cell Reports | 2012

miR-511-3p Modulates Genetic Programs of Tumor-Associated Macrophages

Mario Leonardo Squadrito; Ferdinando Pucci; Laura Magri; Davide Moi; Gregor D. Gilfillan; Anna Ranghetti; Andrea Casazza; Massimiliano Mazzone; Robert Lyle; Luigi Naldini; Michele De Palma

Expression of the mannose receptor (MRC1/CD206) identifies macrophage subtypes, such as alternatively activated macrophages (AAMs) and M2-polarized tumor-associated macrophages (TAMs), which are endowed with tissue-remodeling, proangiogenic, and protumoral activity. However, the significance of MRC1 expression for TAMs protumoral activity is unclear. Here, we describe and characterize miR-511-3p, an intronic microRNA (miRNA) encoded by both mouse and human MRC1 genes. By using sensitive miRNA reporter vectors, we demonstrate robust expression and bioactivity of miR-511-3p in MRC1(+) AAMs and TAMs. Unexpectedly, enforced expression of miR-511-3p tuned down the protumoral gene signature of MRC1(+) TAMs and inhibited tumor growth. Our findings suggest that transcriptional activation of Mrc1 in TAMs evokes a genetic program orchestrated by miR-511-3p, which limits rather than enhances their protumoral functions. Besides uncovering a role for MRC1 as gatekeeper of TAMs protumoral genetic programs, these observations suggest that endogenous miRNAs may operate to establish thresholds for inflammatory cell activation in tumors.


PLOS Genetics | 2012

DNA Methylation and Gene Expression Changes in Monozygotic Twins Discordant for Psoriasis: Identification of Epigenetically Dysregulated Genes

Kristina Gervin; Magnus Dehli Vigeland; Morten Mattingsdal; Martin Hammerø; Heidi Nygård; Anne O. Olsen; Ingunn Brandt; Jennifer R. Harris; Dag E. Undlien; Robert Lyle

Monozygotic (MZ) twins do not show complete concordance for many complex diseases; for example, discordance rates for autoimmune diseases are 20%–80%. MZ discordance indicates a role for epigenetic or environmental factors in disease. We used MZ twins discordant for psoriasis to search for genome-wide differences in DNA methylation and gene expression in CD4+ and CD8+ cells using Illuminas HumanMethylation27 and HT-12 expression assays, respectively. Analysis of these data revealed no differentially methylated or expressed genes between co-twins when analyzed separately, although we observed a substantial amount of small differences. However, combined analysis of DNA methylation and gene expression identified genes where differences in DNA methylation between unaffected and affected twins were correlated with differences in gene expression. Several of the top-ranked genes according to significance of the correlation in CD4+ cells are known to be associated with psoriasis. Further, gene ontology (GO) analysis revealed enrichment of biological processes associated with the immune response and clustering of genes in a biological pathway comprising cytokines and chemokines. These data suggest that DNA methylation is involved in an epigenetic dysregulation of biological pathways involved in the pathogenesis of psoriasis. This is the first study based on data from MZ twins discordant for psoriasis to detect epigenetic alterations that potentially contribute to development of the disease.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Comparison of mouse and human genomes followed by experimental verification yields an estimated 1,019 additional genes

Roderic Guigó; Emmanouil T. Dermitzakis; Pankaj K. Agarwal; Chris P. Ponting; Genís Parra; Alexandre Reymond; Josep F. Abril; Evan Keibler; Robert Lyle; Catherine Ucla; Michael R. Brent

A primary motivation for sequencing the mouse genome was to accelerate the discovery of mammalian genes by using sequence conservation between mouse and human to identify coding exons. Achieving this goal proved challenging because of the large proportion of the mouse and human genomes that is apparently conserved but apparently does not code for protein. We developed a two-stage procedure that exploits the mouse and human genome sequences to produce a set of genes with a much higher rate of experimental verification than previously reported prediction methods. RT-PCR amplification and direct sequencing applied to an initial sample of mouse predictions that do not overlap previously known genes verified the regions flanking one intron in 139 predictions, with verification rates reaching 76%. On average, the confirmed predictions show more restricted expression patterns than the mouse orthologs of known human genes, and two-thirds lack homologs in fish genomes, demonstrating the sensitivity of this dual-genome approach to hard-to-find genes. We verified 112 previously unknown homologs of known proteins, including two homeobox proteins relevant to developmental biology, an aquaporin, and a homolog of dystrophin. We estimate that transcription and splicing can be verified for >1,000 gene predictions identified by this method that do not overlap known genes. This is likely to constitute a significant fraction of the previously unknown, multiexon mammalian genes.

Collaboration


Dive into the Robert Lyle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer R. Harris

Norwegian Institute of Public Health

View shared research outputs
Top Co-Authors

Avatar

Dag E. Undlien

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge