Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert M. Blanton is active.

Publication


Featured researches published by Robert M. Blanton.


Circulation Research | 2005

Transgenic Expression of Fatty Acid Transport Protein 1 in the Heart Causes Lipotoxic Cardiomyopathy

Hsiu-Chiang Chiu; Attila Kovacs; Robert M. Blanton; Xianlin Han; Michael Courtois; Carla J. Weinheimer; Kathryn A. Yamada; Sylvain Brunet; Haodong Xu; Jeanne M. Nerbonne; Michael J. Welch; Nicole Fettig; Terry L. Sharp; Nandakumar Sambandam; Krista Olson; Daniel S. Ory; Jean E. Schaffer

Evidence is emerging that systemic metabolic disturbances contribute to cardiac myocyte dysfunction and clinically apparent heart failure, independent of associated coronary artery disease. To test the hypothesis that perturbation of lipid homeostasis in cardiomyocytes contributes to cardiac dysfunction, we engineered transgenic mice with cardiac-specific overexpression of fatty acid transport protein 1 (FATP1) using the &agr;-myosin heavy chain gene promoter. Two independent transgenic lines demonstrate 4-fold increased myocardial free fatty acid (FFA) uptake that is consistent with the known function of FATP1. Increased FFA uptake in this model likely contributes to early cardiomyocyte FFA accumulation (2-fold increased) and subsequent increased cardiac FFA metabolism (2-fold). By 3 months of age, transgenic mice have echocardiographic evidence of impaired left ventricular filling and biatrial enlargement, but preserved systolic function. Doppler tissue imaging and hemodynamic studies confirm that these mice have predominantly diastolic dysfunction. Furthermore, ambulatory ECG monitoring reveals prolonged QTc intervals, reflecting reductions in the densities of repolarizing, voltage-gated K+ currents in ventricular myocytes. Our results show that in the absence of systemic metabolic disturbances, such as diabetes or hyperlipidemia, perturbation of cardiomyocyte lipid homeostasis leads to cardiac dysfunction with pathophysiological findings similar to those in diabetic cardiomyopathy. Moreover, the MHC-FATP model supports a role for FATPs in FFA import into the heart in vivo.


Journal of Clinical Investigation | 2009

Regulator of G protein signaling 2 mediates cardiac compensation to pressure overload and antihypertrophic effects of PDE5 inhibition in mice.

Eiki Takimoto; Norimichi Koitabashi; Steven Hsu; Elizabeth A. Ketner; Manling Zhang; Takahiro Nagayama; Djahida Bedja; Kathleen L. Gabrielson; Robert M. Blanton; David P. Siderovski; Michael E. Mendelsohn; David A. Kass

The heart initially compensates for hypertension-mediated pressure overload by enhancing its contractile force and developing hypertrophy without dilation. Gq protein-coupled receptor pathways become activated and can depress function, leading to cardiac failure. Initial adaptation mechanisms to reduce cardiac damage during such stimulation remain largely unknown. Here we have shown that this initial adaptation requires regulator of G protein signaling 2 (RGS2). Mice lacking RGS2 had a normal basal cardiac phenotype, yet responded rapidly to pressure overload, with increased myocardial Gq signaling, marked cardiac hypertrophy and failure, and early mortality. Swimming exercise, which is not accompanied by Gq activation, induced a normal cardiac response, while Rgs2 deletion in Galphaq-overexpressing hearts exacerbated hypertrophy and dilation. In vascular smooth muscle, RGS2 is activated by cGMP-dependent protein kinase (PKG), suppressing Gq-stimulated vascular contraction. In normal mice, but not Rgs2-/- mice, PKG activation by the chronic inhibition of cGMP-selective phosphodiesterase 5 (PDE5) suppressed maladaptive cardiac hypertrophy, inhibiting Gq-coupled stimuli. Importantly, PKG was similarly activated by PDE5 inhibition in myocardium from both genotypes, but PKG plasma membrane translocation was more transient in Rgs2-/- myocytes than in controls and was unaffected by PDE5 inhibition. Thus, RGS2 is required for early myocardial compensation to pressure overload and mediates the initial antihypertrophic and cardioprotective effects of PDE5 inhibitors.


Proceedings of the National Academy of Sciences of the United States of America | 2008

High blood pressure arising from a defect in vascular function

Simon K. Michael; Howard K. Surks; Yuepeng Wang; Yan Zhu; Robert M. Blanton; Michelle Jamnongjit; Mark Aronovitz; Wendy Baur; Ken-ichi Ohtani; Michael K. Wilkerson; Adrian D. Bonev; Mark T. Nelson; Richard H. Karas; Michael E. Mendelsohn

Hypertension, a major cardiovascular risk factor and cause of mortality worldwide, is thought to arise from primary renal abnormalities. However, the etiology of most cases of hypertension remains unexplained. Vascular tone, an important determinant of blood pressure, is regulated by nitric oxide, which causes vascular relaxation by increasing intracellular cGMP and activating cGMP-dependent protein kinase I (PKGI). Here we show that mice with a selective mutation in the N-terminal protein interaction domain of PKGIα display inherited vascular smooth muscle cell abnormalities of contraction, abnormal relaxation of large and resistance blood vessels, and increased systemic blood pressure. Renal function studies and responses to changes in dietary sodium in the PKGIα mutant mice are normal. These data reveal that PKGIα is required for normal VSMC physiology and support the idea that high blood pressure can arise from a primary abnormality of vascular smooth muscle cell contractile regulation, suggesting a new approach to the diagnosis and therapy of hypertension and cardiovascular diseases.


Circulation-heart Failure | 2015

Left Ventricular T Cell Recruitment Contributes to the Pathogenesis of Heart Failure

Tania Nevers; Ane M. Salvador; Anna Grodecki-Pena; Andrew Knapp; Francisco Velazquez; Mark Aronovitz; Navin K. Kapur; Richard H. Karas; Robert M. Blanton; Pilar Alcaide

Background—Despite the emerging association between heart failure (HF) and inflammation, the role of T cells, major players in chronic inflammation, has only recently begun to be explored. Whether T-cell recruitment to the left ventricle (LV) participates in the development of HF requires further investigation to identify novel mechanisms that may serve for the design of alternative therapeutic interventions. Methods and Results—Real-time videomicroscopy of T cells from nonischemic HF patients or from mice with HF induced by transverse aortic constriction revealed enhanced adhesion to activated vascular endothelial cells under flow conditions in vitro compared with T cells from healthy subjects or sham mice. T cells in the mediastinal lymph nodes and the intramyocardial endothelium were both activated in response to transverse aortic constriction and the kinetics of LV T-cell infiltration was directly associated with the development of systolic dysfunction. In response to transverse aortic constriction, T cell–deficient mice (T-cell receptor, TCR&agr;−/−) had preserved LV systolic and diastolic function, reduced LV fibrosis, hypertrophy and inflammation, and improved survival compared with wild-type mice. Furthermore, T-cell depletion in wild-type mice after transverse aortic constriction prevented HF. Conclusions—T cells are major contributors to nonischemic HF. Their activation combined with the activation of the LV endothelium results in LV T-cell infiltration negatively contributing to HF progression through mechanisms involving cytokine release and induction of cardiac fibrosis and hypertrophy. Reduction of T-cell infiltration is thus identified as a novel translational target in HF.


Journal of the American Heart Association | 2012

Protein Kinase G Iα Inhibits Pressure Overload–Induced Cardiac Remodeling and Is Required for the Cardioprotective Effect of Sildenafil In Vivo

Robert M. Blanton; Eiki Takimoto; Angela Lane; Mark Aronovitz; Robert Piotrowski; Richard H. Karas; David A. Kass; Michael E. Mendelsohn

Background Cyclic GMP (cGMP) signaling attenuates cardiac remodeling, but it is unclear which cGMP effectors mediate these effects and thus might serve as novel therapeutic targets. Therefore, we tested whether the cGMP downstream effector, cGMP-dependent protein kinase G Iα (PKGIα), attenuates pressure overload–induced remodeling in vivo. Methods and Results The effect of transaortic constriction (TAC)–induced left ventricular (LV) pressure overload was examined in mice with selective mutations in the PKGIα leucine zipper interaction domain. Compared with wild-type littermate controls, in response to TAC, these Leucine Zipper Mutant (LZM) mice developed significant LV systolic and diastolic dysfunction by 48 hours (n=6 WT sham, 6 WT TAC, 5 LZM sham, 9 LZM TAC). In response to 7-day TAC, the LZM mice developed increased pathologic hypertrophy compared with controls (n=5 WT sham, 4 LZM sham, 8 WT TAC, 11 LZM TAC). In WT mice, but not in LZM mice, phosphodiesterase 5 (PDE5) inhibition with sildenafil (Sil) significantly inhibited TAC-induced cardiac hypertrophy and LV systolic dysfunction in WT mice, but this was abolished in the LZM mice (n=3 WT sham, 4 LZM sham, 3 WT TAC vehicle, 6 LZM TAC vehicle, 4 WT TAC Sil, 6 LZM TAC Sil). And in response to prolonged, 21-day TAC (n=8 WT sham, 7 LZM sham, 21 WT TAC, 15 LZM TAC), the LZM mice developed markedly accelerated mortality and congestive heart failure. TAC induced activation of JNK, which inhibits cardiac remodeling in vivo, in WT, but not in LZM, hearts, identifying a novel signaling pathway activated by PKGIα in the heart in response to LV pressure overload. Conclusions These findings reveal direct roles for PKGIα in attenuating pressure overload–induced remodeling in vivo and as a required effector for the cardioprotective effects of sildenafil.


Journal of Biological Chemistry | 2012

Direct Binding and Regulation of RhoA Protein by Cyclic GMP-dependent Protein Kinase Iα

Mikio Kato; Robert M. Blanton; Guang-rong Wang; Timothy J. Judson; Yuichi Abe; Masafume Myoishi; Richard H. Karas; Michael E. Mendelsohn

Background: Regulation of vascular smooth muscle tone by cGMP-dependent protein kinase Iα (PKGIα) through RhoA inhibition is not understood. Results: PKGIα binds RhoA, through cGMP-induced binding, and inhibition of RhoA requires PKGIα activity. Conclusion: RhoA-PKGIα co-interaction regulates RhoA function. Significance: Understanding RhoA regulation by PKGIα is important for understanding the regulation of vascular tone in vivo and in human diseases such as hypertension. Vascular smooth muscle cell (VSMC) tone is regulated by the state of myosin light chain (MLC) phosphorylation, which is in turn regulated by the balance between MLC kinase and MLC phosphatase (MLCP) activities. RhoA activates Rho kinase, which phosphorylates the regulatory subunit of MLC phosphatase, thereby inhibiting MLC phosphatase activity and increasing contraction and vascular tone. Nitric oxide is an important mediator of VSMC relaxation and vasodilation, which acts by increasing cyclic GMP (cGMP) levels in VSMC, thereby activating cGMP-dependent protein kinase Iα (PKGIα). PKGI is known to phosphorylate Rho kinase, preventing Rho-mediated inhibition of MLC phosphatase, promoting vasorelaxation, although the molecular mechanisms that mediate this are unclear. Here we identify RhoA as a target of activated PKGIα and show further that PKGIα binds directly to RhoA, inhibiting its activation and translocation. In protein pulldown and immunoprecipitation experiments, binding of RhoA and PKGIα was demonstrated via a direct interaction between the amino terminus of RhoA (residues 1–44), containing the switch I domain of RhoA, and the amino terminus of PKGIα (residues 1–59), which includes a leucine zipper heptad repeat motif. Affinity assays using cGMP-immobilized agarose showed that only activated PKGIα binds RhoA, and a leucine zipper mutant PKGIα was unable to bind RhoA even if activated. Furthermore, a catalytically inactive mutant of PKGIα bound RhoA but did not prevent RhoA activation and translocation. Collectively, these results support that RhoA is a PKGIα target and that direct binding of activated PKGIα to RhoA is central to cGMP-mediated inhibition of the VSMC Rho kinase contractile pathway.


Hypertension | 2015

Exposure to Experimental Preeclampsia in Mice Enhances the Vascular Response to Future Injury

Dafina Pruthi; Eliyahu V. Khankin; Robert M. Blanton; Mark Aronovitz; Suzanne D. Burke; Amy McCurley; S. Ananth Karumanchi; Iris Z. Jaffe

Cardiovascular disease (CVD) remains the leading killer of women in developed nations. One sex-specific risk factor is preeclampsia, a syndrome of hypertension and proteinuria that complicates 5% of pregnancies. Although preeclampsia resolves after delivery, exposed women are at increased long-term risk of premature CVD and mortality. Pre-existing CVD risk factors are associated with increased risk of developing preeclampsia but whether preeclampsia merely uncovers risk or contributes directly to future CVD remains a critical unanswered question. A mouse preeclampsia model was used to test the hypothesis that preeclampsia causes an enhanced vascular response to future vessel injury. A preeclampsia-like state was induced in pregnant CD1 mice by overexpressing soluble fms-like tyrosine kinase-1, a circulating antiangiogenic protein that induces hypertension and glomerular disease resembling human preeclampsia. Two months postpartum, soluble fms-like tyrosine kinase-1 levels and blood pressure normalized and cardiac size and function by echocardiography and renal histology were indistinguishable in preeclampsia-exposed compared with control mice. Mice were then challenged with unilateral carotid injury. Preeclampsia-exposed mice had significantly enhanced vascular remodeling with increased vascular smooth muscle cell proliferation (180% increase; P<0.01) and vessel fibrosis (216% increase; P<0.001) compared with control pregnancy. In the contralateral uninjured vessel, there was no difference in remodeling after exposure to preeclampsia. These data support a new model in which vessels exposed to preeclampsia retain a persistently enhanced vascular response to injury despite resolution of preeclampsia after delivery. This new paradigm may contribute to the substantially increased risk of CVD in woman exposed to preeclampsia.


Journal of Clinical Investigation | 2014

PDE5 inhibitor efficacy is estrogen dependent in female heart disease

Hideyuki Sasaki; Takahiro Nagayama; Robert M. Blanton; Kinya Seo; Manling Zhang; Guangshuo Zhu; Dong I. Lee; Djahida Bedja; Steven Hsu; Osamu Tsukamoto; Seiji Takashima; Masafumi Kitakaze; Michael E. Mendelsohn; Richard H. Karas; David A. Kass; Eiki Takimoto

Inhibition of cGMP-specific phosphodiesterase 5 (PDE5) ameliorates pathological cardiac remodeling and has been gaining attention as a potential therapy for heart failure. Despite promising results in males, the efficacy of the PDE5 inhibitor sildenafil in female cardiac pathologies has not been determined and might be affected by estrogen levels, given the hormones involvement in cGMP synthesis. Here, we determined that the heart-protective effect of sildenafil in female mice depends on the presence of estrogen via a mechanism that involves myocyte eNOS-dependent cGMP synthesis and the cGMP-dependent protein kinase Iα (PKGIα). Sildenafil treatment failed to exert antiremodeling properties in female pathological hearts from Gαq-overexpressing or pressure-overloaded mice after ovary removal; however, estrogen replacement restored the effectiveness of sildenafil in these animals. In females, sildenafil-elicited myocardial PKG activity required estrogen, which stimulated tonic cardiomyocyte cGMP synthesis via an eNOS/soluble guanylate cyclase pathway. In contrast, eNOS activation, cGMP synthesis, and sildenafil efficacy were not estrogen dependent in male hearts. Estrogen and sildenafil had no impact on pressure-overloaded hearts from animals expressing dysfunctional PKGIα, indicating that PKGIα mediates antiremodeling effects. These results support the importance of sex differences in the use of PDE5 inhibitors for treating heart disease and the critical role of estrogen status when these agents are used in females.


Journal of the American Heart Association | 2016

Intercellular Adhesion Molecule 1 Regulates Left Ventricular Leukocyte Infiltration, Cardiac Remodeling, and Function in Pressure Overload-Induced Heart Failure.

Ane M. Salvador; Tania Nevers; Francisco Velazquez; Mark Aronovitz; Bonnie Wang; Ana Molina; Iris Z. Jaffe; Richard H. Karas; Robert M. Blanton; Pilar Alcaide

Background Left ventricular dysfunction and heart failure are strongly associated in humans with increased circulating levels of proinflammatory cytokines, T cells, and soluble intercellular cell adhesion molecule 1 (ICAM1). In mice, infiltration of T cells into the left ventricle contributes to pathological cardiac remodeling, but the mechanisms regulating their recruitment to the heart are unclear. We hypothesized that ICAM1 regulates cardiac inflammation and pathological cardiac remodeling by mediating left ventricular T‐cell recruitment and thus contributing to cardiac dysfunction and heart failure. Methods and Results In a mouse model of pressure overload–induced heart failure, intramyocardial endothelial ICAM1 increased within 48 hours in response to thoracic aortic constriction and remained upregulated as heart failure progressed. ICAM1‐deficient mice had decreased T‐cell and proinflammatory monocyte infiltration in the left ventricle in response to thoracic aortic constriction, despite having numbers of circulating T cells and activated T cells in the heart‐draining lymph nodes that were similar to those of wild‐type mice. ICAM1‐deficient mice did not develop cardiac fibrosis or systolic and diastolic dysfunction in response to thoracic aortic constriction. Exploration of the mechanisms regulating ICAM1 expression revealed that endothelial ICAM1 upregulation and T‐cell infiltration were not mediated by endothelial mineralocorticoid receptor signaling, as demonstrated in thoracic aortic constriction studies in mice with endothelial mineralocorticoid receptor deficiency, but rather were induced by the cardiac cytokines interleukin 1β and 6. Conclusions ICAM1 regulates pathological cardiac remodeling by mediating proinflammatory leukocyte infiltration in the left ventricle and cardiac fibrosis and dysfunction and thus represents a novel target for treatment of heart failure.


PLOS ONE | 2013

Biventricular Remodeling in Murine Models of Right Ventricular Pressure Overload

Navin K. Kapur; Vikram Paruchuri; Mark Aronovitz; Xiaoying Qiao; Emily E. Mackey; Gerard H. Daly; Kishan Ughreja; Jonathan Levine; Robert M. Blanton; Nicholas S. Hill; Richard H. Karas

Right ventricular (RV) failure is a major cause of mortality in acute or chronic lung disease and left heart failure. The objective of this study was to demonstrate a percutaneous approach to study biventricular hemodynamics in murine models of primary and secondary RV pressure overload (RVPO) and further explore biventricular expression of two key proteins that regulate cardiac remodeling: calcineurin and transforming growth factor beta 1 (TGFβ1). Methods Adult, male mice underwent constriction of the pulmonary artery or thoracic aorta as models of primary and secondary RVPO, respectively. Conductance catheterization was performed followed by tissue analysis for changes in myocyte hypertrophy and fibrosis. Results Both primary and secondary RVPO decreased biventricular stroke work however RV instantaneous peak pressure (dP/dtmax) and end-systolic elastance (Ees) were preserved in both groups compared to controls. In contrast, left ventricular (LV) dP/dtmax and LV-Ees were unchanged by primary, but reduced in the secondary RVPO group. The ratio of RV:LV ventriculo-arterial coupling was increased in primary and reduced in secondary RVPO. Primary and secondary RVPO increased RV mass, while LV mass decreased in primary and increased in the secondary RVPO groups. RV fibrosis and hypertrophy were increased in both groups, while LV fibrosis and hypertrophy were increased in secondary RVPO only. RV calcineurin expression was increased in both groups, while LV expression increased in secondary RVPO only. Biventricular TGFβ1 expression was increased in both groups. Conclusion These data identify distinct effects of primary and secondary RVPO on biventricular structure, function, and expression of key remodeling pathways.

Collaboration


Dive into the Robert M. Blanton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Kass

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge