Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert M. Culik is active.

Publication


Featured researches published by Robert M. Culik.


Annual Review of Physical Chemistry | 2015

Site-Specific Infrared Probes of Proteins

Jianqiang Ma; Ileana M. Pazos; Wenkai Zhang; Robert M. Culik; Feng Gai

Infrared spectroscopy has played an instrumental role in the study of a wide variety of biological questions. However, in many cases, it is impossible or difficult to rely on the intrinsic vibrational modes of biological molecules of interest, such as proteins, to reveal structural and environmental information in a site-specific manner. To overcome this limitation, investigators have dedicated many recent efforts to the development and application of various extrinsic vibrational probes that can be incorporated into biological molecules and used to site-specifically interrogate their structural or environmental properties. In this review, we highlight recent advancements in this rapidly growing research area.


Angewandte Chemie | 2011

Achieving Secondary Structural Resolution in Kinetic Measurements of Protein Folding: A Case Study of the Folding Mechanism of Trp-cage

Robert M. Culik; Arnaldo L. Serrano; Michelle R. Bunagan; Feng Gai

Protein folding kinetics are often measured by monitoring the change of a single spectroscopic signal, such as the fluorescence of an intrinsic fluorophore or the absorbance at a single frequency within an electronic or vibrational band of the protein backbone. While such an experimental strategy is easy to implement, the use of a single spectroscopic signal can leave important folding events undetected and overlooked. Herein, we demonstrate, using the mini-protein Trp-cage as an example, that the structural resolution of protein folding kinetics can be significantly improved when a multi-probe and multi-frequency approach is used, thus allowing a more complete understanding of the folding mechanism.


Journal of the American Chemical Society | 2012

Using Thioamides to Site-Specifically Interrogate the Dynamics of Hydrogen Bond Formation in β-Sheet Folding

Robert M. Culik; Hyunil Jo; William F. DeGrado; Feng Gai

Thioamides are sterically almost identical to their oxoamide counterparts, but they are weaker hydrogen bond acceptors. Therefore, thioamide amino acids are excellent candidates for perturbing the energetics of backbone-backbone H-bonds in proteins and hence should be useful in elucidating protein folding mechanisms in a site-specific manner. Herein, we validate this approach by applying it to probe the dynamic role of interstrand H-bond formation in the folding kinetics of a well-studied β-hairpin, tryptophan zipper. Our results show that reducing the strength of the peptides backbone-backbone H-bonds, except the one directly next to the β-turn, does not change the folding rate, suggesting that most native interstrand H-bonds in β-hairpins are formed only after the folding transition state.


Biochemistry | 2010

Selective Incorporation of Nitrile-Based Infrared Probes into Proteins via Cysteine Alkylation

Hyunil Jo; Robert M. Culik; Ivan V. Korendovych; William F. DeGrado; Feng Gai

The nitrile stretching vibration is increasingly used as a sensitive infrared probe of local protein environments. However, site-specific incorporation of a nitrile moiety into proteins is difficult. Here we show that various aromatic nitriles can be easily incorporated into peptides and proteins via either thiol alkylation or arylation reaction.


Journal of the American Chemical Society | 2013

Using VIPT-jump to distinguish between different folding mechanisms: application to BBL and a Trpzip.

Chun–Wei Lin; Robert M. Culik; Feng Gai

Protein folding involves a large number of sequential molecular steps or conformational substates. Thus, experimental characterization of the underlying folding energy landscape for any given protein is difficult. Herein, we present a new method that can be used to determine the major characteristics of the folding energy landscape in question, e.g., to distinguish between activated and barrierless downhill folding scenarios. This method is based on the idea that the conformational relaxation kinetics of different folding mechanisms at a given final condition will show different dependences on the initial condition. We show, using both simulation and experiment, that it is possible to differentiate between disparate kinetic folding models by comparing temperature jump (T-jump) relaxation traces obtained with a fixed final temperature and varied initial temperatures, which effectively varies the initial potential (VIP) of the system of interest. We apply this method (hereafter refer to as VIPT-jump) to two model systems, tryptophan zipper (Trpzip)-2c and BBL, and our results show that BBL exhibits characteristics of barrierless downhill folding, whereas Trpzip-2c folding encounters a free energy barrier. In addition, using the T-jump data of BBL we are able to provide, via Langevin dynamics simulations, a realistic estimate of its conformational diffusion coefficient.


Journal of Physical Chemistry B | 2014

Experimental Validation of the Role of Trifluoroethanol as a Nanocrowder

Robert M. Culik; Rachel M. Abaskharon; Ileana M. Pazos; Feng Gai

Trifluoroethanol (TFE) is commonly used to induce protein secondary structure, especially α-helix formation. Due to its amphiphilic nature, however, TFE can also self-associate to form micellelike, nanometer-sized clusters. Herein, we hypothesize that such clusters can act as nanocrowders to increase protein folding rates via the excluded volume effect. To test this hypothesis, we measure the conformational relaxation kinetics of an intrinsically disordered protein, the phosphorylated kinase inducible domain (pKID), which forms a helix–turn–helix in TFE solutions. We find that the conformational relaxation rate of pKID displays a rather complex dependence on TFE percentage (v/v): while it first decreases between 0 and 5%, between 5 and 15% the rate increases and then remains relatively unchanged between 15 and 30% and finally decreases again at higher percentages (i.e., 50%). This trend coincides with the fact that TFE clustering is maximized in the range of 15–30%, thus providing validation of our hypothesis. Another line of supporting evidence comes from the observation that the relaxation rate of a monomeric helical peptide, which due to its predominantly local interactions in the folded state is less affected by crowding, does not show a similar TFE dependence.


Journal of Physical Chemistry B | 2014

How quickly can a β-hairpin fold from its transition state?

Beatrice N. Markiewicz; Lijiang Yang; Robert M. Culik; Yi Qin Gao; Feng Gai

Understanding the structural nature of the free energy bottleneck(s) encountered in protein folding is essential to elucidating the underlying dynamics and mechanism. For this reason, several techniques, including Φ-value analysis, have previously been developed to infer the structural characteristics of such high free-energy or transition states. Herein we propose that one (or few) appropriately placed backbone and/or side chain cross-linkers, such as disulfides, could be used to populate a thermodynamically accessible conformational state that mimics the folding transition state. Specifically, we test this hypothesis on a model β-hairpin, Trpzip4, as its folding mechanism has been extensively studied and is well understood. Our results show that cross-linking the two β-strands near the turn region increases the folding rate by an order of magnitude, to about (500 ns)−1, whereas cross-linking the termini results in a hyperstable β-hairpin that has essentially the same folding rate as the uncross-linked peptide. Taken together, these findings suggest that cross-linking is not only a useful strategy to manipulate folding free energy barriers, as shown in other studies, but also, in some cases, it can be used to stabilize a folding transition state analogue and allow for direct assessment of the folding process on the downhill side of the free energy barrier. The calculated free energy landscape of the cross-linked Trpzip4 also supports this picture. An empirical analysis further suggests, when folding of β-hairpins does not involve a significant free energy barrier, the folding time (τ) follows a power law dependence on the number of hydrogen bonds to be formed (nH), namely, τ = τ0nHα, with τ0 = 20 ns and α = 2.3.


Chemical Physics | 2013

Using D-amino acids to delineate the mechanism of protein folding: Application to Trp-cage

Robert M. Culik; Srinivas Annavarapu; Vikas Nanda; Feng Gai

Using the miniprotein Trp-cage as a model, we show that D-amino acids can be used to facilitate the delineation of protein folding mechanism. Specifically, we study the folding-unfolding kinetics of three Trp-cage mutants where the native glycine residue near the C-terminus of the α-helix is replaced by a D-amino acid. A previous study showed that these mutations increase the Trp-cage stability, due to a terminal capping effect. Our results show that the stabilizing effect of D-asparagine and D-glutamine originates almost exclusively from a decrease in the unfolding rate, while the D-alanine mutation results in a similar decrease in the unfolding rate, but it also increases the folding rate. Together, these results support a folding mechanism wherein the α-helix formation in the transition state is nucleated at the N-terminus, whereas those long-range native interactions stabilizing this helix are developed at the downhill side of the folding free energy barrier.


Journal of Physical Chemistry B | 2013

Assessment of Local Friction in Protein Folding Dynamics Using a Helix Cross-Linker

Beatrice N. Markiewicz; Hyunil Jo; Robert M. Culik; William F. DeGrado; Feng Gai

Internal friction arising from local steric hindrance and/or the excluded volume effect plays an important role in controlling not only the dynamics of protein folding but also conformational transitions occurring within the native state potential well. However, experimental assessment of such local friction is difficult because it does not manifest itself as an independent experimental observable. Herein, we demonstrate, using the miniprotein trp-cage as a testbed, that it is possible to selectively increase the local mass density in a protein and hence the magnitude of local friction, thus making its effect directly measurable via folding kinetic studies. Specifically, we show that when a helix cross-linker, m-xylene, is placed near the most congested region of the trp-cage it leads to a significant decrease in both the folding rate (by a factor of 3.8) and unfolding rate (by a factor of 2.5 at 35 °C) but has little effect on protein stability. Thus, these results, in conjunction with those obtained with another cross-linked trp-cage and two uncross-linked variants, demonstrate the feasibility of using a nonperturbing cross-linker to help quantify the effect of internal friction. In addition, we estimate that a m-xylene cross-linker could lead to an increase in the roughness of the folding energy landscape by as much as 0.4-1.0k(B)T.


Science China-chemistry | 2014

Tightening up the structure, lighting up the pathway: application of molecular constraints and light to manipulate protein folding, self-assembly and function

Beatrice N. Markiewicz; Robert M. Culik; Feng Gai

Chemical cross-linking provides an effective avenue to reduce the conformational entropy of polypeptide chains and hence has become a popular method to induce or force structural formation in peptides and proteins. Recently, other types of molecular constraints, especially photoresponsive linkers and functional groups, have also found increased use in a wide variety of applications. Herein, we provide a concise review of using various forms of molecular strategies to constrain proteins, thereby stabilizing their native states, gaining insight into their folding mechanisms, and/or providing a handle to trigger a conformational process of interest with light. The applications discussed here cover a wide range of topics, ranging from delineating the details of the protein folding energy landscape to controlling protein assembly and function.

Collaboration


Dive into the Robert M. Culik's collaboration.

Top Co-Authors

Avatar

Feng Gai

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Arnaldo L. Serrano

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyunil Jo

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ileana M. Pazos

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianqiang Ma

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge