Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert M. Davidson is active.

Publication


Featured researches published by Robert M. Davidson.


Entropy | 2013

Biological Water Dynamics and Entropy: A Biophysical Origin of Cancer and Other Diseases

Robert M. Davidson; Ann Lauritzen; Stephanie Seneff

Abstract: This paper postulates that water structure is altered by biomolecules as well as by disease-enabling entities such as certain solvated ions, and in turn water dynamics and structure affect the function of biomolecular interactions. Although the structural and dynamical alterations are subtle, they perturb a well-balanced system sufficiently to facilitate disease. We propose that the disruption of water dynamics between and within cells underlies many disease conditions. We survey recent advances in magnetobiology, nanobiology, and colloid and interface science that point compellingly to the crucial role played by the unique physical properties of quantum coherent nanomolecular clusters of magnetized water in enabling life at the cellular level by solving the “problems” of thermal diffusion, intracellular crowding, and molecular self-assembly. Interphase water and cellular surface tension, normally maintained by biological sulfates at membrane surfaces, are compromised by exogenous interfacial water stressors such as cationic aluminum, with consequences that include greater local water hydrophobicity, increased water tension, and interphase stretching. The ultimate result is greater “stiffness” in the extracellular matrix and either the “soft” cancerous state or the “soft” neurodegenerative state within cells. Our hypothesis provides a basis for understanding why so many idiopathic diseases of today are highly stereotyped and pluricausal.


Entropy | 2012

Empirical Data Confirm Autism Symptoms Related to Aluminum and Acetaminophen Exposure

Stephanie Seneff; Robert M. Davidson; Jingjing Liu

Autism is a condition characterized by impaired cognitive and social skills, associated with compromised immune function. The incidence is alarmingly on the rise, and environmental factors are increasingly suspected to play a role. This paper investigates word frequency patterns in the U.S. CDC Vaccine Adverse Events Reporting System (VAERS) database. Our results provide strong evidence supporting a link between autism and the aluminum in vaccines. A literature review showing toxicity of aluminum in human physiology offers further support. Mentions of autism in VAERS increased steadily at the end of the last century, during a period when mercury was being phased out, while aluminum adjuvant burden was being increased. Using standard log-likelihood ratio techniques, we identify several signs and symptoms that are significantly more prevalent in vaccine reports after 2000, including cellulitis, seizure, depression, fatigue, pain and death, which are also significantly associated with aluminum-containing vaccines. We propose that children with the autism diagnosis are especially vulnerable to toxic metals such as aluminum and mercury due to insufficient serum sulfate and glutathione. A strong correlation between autism and the MMR (Measles, Mumps, Rubella) vaccine is also observed, which may be partially explained via an increased sensitivity to acetaminophen administered to control fever.


Medical Hypotheses | 2012

Might cholesterol sulfate deficiency contribute to the development of autistic spectrum disorder

Stephanie Seneff; Robert M. Davidson; Luca Mascitelli

Autism is a condition characterized by impaired cognitive and social skills, often associated with compromised immune function. There has been considerable concern recently that the incidence of autism is alarmingly on the rise, especially in Western nations, and environmental factors are increasingly suspected to play a role. In this paper, we propose a novel hypothesis for a principle cause of autism, namely insufficient supply of cholesterol sulfate to the fetus during gestation and the infant postnatally. We hypothesize that main contributory factors are insufficient sun exposure and insufficient dietary sulfur, for both the mother and the affected child. A novel contribution is the theory that endothelial nitric oxide synthase produces not only nitric oxide but also sulfate, and that sulfate production is stimulated by sunlight. We further hypothesize that the sulfur shortage manifests as an impaired immune response, including an increased susceptibility to eczema and asthma. Proposed corrective measures involve increased dietary sulfur intake for both the mother and the child, and increased sun exposure.


Journal of Toxicology | 2014

Aluminum-induced entropy in biological systems: implications for neurological disease.

Christopher A. Shaw; Stephanie Seneff; Stephen D. Kette; Lucija Tomljenovic; John W. Oller; Robert M. Davidson

Over the last 200 years, mining, smelting, and refining of aluminum (Al) in various forms have increasingly exposed living species to this naturally abundant metal. Because of its prevalence in the earths crust, prior to its recent uses it was regarded as inert and therefore harmless. However, Al is invariably toxic to living systems and has no known beneficial role in any biological systems. Humans are increasingly exposed to Al from food, water, medicinals, vaccines, and cosmetics, as well as from industrial occupational exposure. Al disrupts biological self-ordering, energy transduction, and signaling systems, thus increasing biosemiotic entropy. Beginning with the biophysics of water, disruption progresses through the macromolecules that are crucial to living processes (DNAs, RNAs, proteoglycans, and proteins). It injures cells, circuits, and subsystems and can cause catastrophic failures ending in death. Al forms toxic complexes with other elements, such as fluorine, and interacts negatively with mercury, lead, and glyphosate. Al negatively impacts the central nervous system in all species that have been studied, including humans. Because of the global impacts of Al on water dynamics and biosemiotic systems, CNS disorders in humans are sensitive indicators of the Al toxicants to which we are being exposed.


Entropy | 2012

The Initial Common Pathway of Inflammation, Disease, and Sudden Death

Robert M. Davidson; Stephanie Seneff

In reviewing the literature pertaining to interfacial water, colloidal stability, and cell membrane function, we are led to propose that a cascade of events that begins with acute exogenous surfactant-induced interfacial water stress can explain the etiology of sudden death syndrome (SDS), as well as many other diseases associated with modern times. A systemic lowering of serum zeta potential mediated by exogenous cationic surfactant administration is the common underlying pathophysiology. The cascade leads to subsequent inflammation, serum sickness, thrombohemorrhagic phenomena, colloidal instability, and ultimately even death. We propose that a sufficient precondition for sudden death is lowered bioavailability of certain endogenous sterol sulfates, sulfated glycolipids, and sulfated glycosaminoglycans, which are essential in maintaining biological equipose, energy metabolism, membrane function, and thermodynamic stability in living organisms. Our literature review provides the basis for the presentation of a novel hypothesis as to the origin of endogenous bio-sulfates which involves energy transduction from sunlight. Our hypothesis is amply supported by a growing body of data showing that parenteral administration of substances that lower serum zeta potential results in kosmotropic cationic and/or chaotropic anionic interfacial water stress, and the resulting cascade.


Theoretical Biology and Medical Modelling | 2015

A novel hypothesis for atherosclerosis as a cholesterol sulfate deficiency syndrome

Stephanie Seneff; Robert M. Davidson; Ann Lauritzen; Anthony Samsel; Glyn Wainwright

BackgroundDespite a vast literature, atherosclerosis and the associated ischemia/reperfusion injuries remain today in many ways a mystery. Why do atheromatous plaques make and store a supply of cholesterol and sulfate within the major arteries supplying the heart? Why are treatment programs aimed to suppress certain myocardial infarction risk factors, such as elevated serum homocysteine and inflammation, generally counterproductive?MethodsOur methods are based on an extensive search of the literature in atherosclerotic cardiovascular disease as well as in the area of the unique properties of water, the role of biosulfates in the vascular wall, and the role of electromagnetic fields in vascular flow. Our investigation reveals a novel pathology linked to atherosclerosis that better explains the observed facts than the currently held popular view.ResultsWe propose a novel theory that atherosclerosis can best be explained as being due to cholesterol sulfate deficiency. Furthermore, atheromatous plaques replenish the supply of cholesterol and sulfate to the microvasculature, by exploiting the inflammatory agent superoxide to derive sulfate from homocysteine and other sulfur sources. We argue that the sulfate anions attached to the glycosaminoglycans in the glycocalyx are essential in maintaining the structured water that is crucial for vascular endothelial health and erythrocyte mobility through capillaries. Sulfate depletion leads to cholesterol accumulation in atheromas, because its transport through water-based media depends on sulfurylation. We show that streaming potential induces nitric oxide (NO) release, and NO derivatives break down the extracellular matrix, redistributing sulfate to the microvasculature. We argue that low (less negative) zeta potential due to insufficient sulfate anions leads to hypertension and thrombosis, because these responses can increase streaming potential and induce nitric-oxide mediated vascular relaxation, promoting oxygen delivery. Our hypothesis is a parsimonious explanation of multiple features of atherosclerotic cardiovascular disease.ConclusionsIf our interpretation is correct, then it would have a significant impact on how atherosclerosis is treated. We recommend a high intake of sulfur-containing foods as well as an avoidance of exposure to toxicants that may impair sulfate synthesis.


Entropy | 2012

Is Cholesterol Sulfate Deficiency a Common Factor in Preeclampsia, Autism, and Pernicious Anemia?

Stephanie Seneff; Robert M. Davidson; Jingjing Liu

In a recent paper, we proposed that a contributing factor in autism is a deficiency in cholesterol sulfate supply. In this paper, we investigate a link between preeclampsia and subsequent autism in the child, and we hypothesize that both conditions can be attributed to a severe depletion of cholesterol sulfate. Through studies on the Vaccine Adverse Event Reporting System (VAERS) database, we demonstrate a strong statistical relationship among the signs and symptoms associated with autism and those associated with preeclampsia, pernicious anemia, and serious adverse reactions to vaccines. We show that VAERS reports associated with symptoms typical of pernicious anemia produce both a set of symptoms that are highly correlated with preeclampsia and another set highly correlated with autism. We explain this observation via an argument that, in a severe reaction, the cascade of events subsequent to vaccination reflects a profuse production of nitric oxide (NO) and consequential destruction of both red blood cells (RBCs) and cobalamin. This may explain the diverse signs and symptoms associated with both preeclampsia and severe vaccine adverse reactions. We argue that excess NO synthesis, induced by the aluminum and antigen in vaccines, results in hemolysis of RBCs, which allows hemoglobin to scavenge the excess NO, converting it to nitrate. The NO is also scavenged by cobalamin, leading to its inactivation and contributing to subsequent pernicious anemia. Finally, we demonstrate that severe adverse reactions to vaccines can be associated with life-threatening conditions related to the heart and brain, as well as


Immunome Research | 2013

Aluminum?s Role in CNS-immune System Interactions leading to Neurological Disorders

Christopher A. Shaw; Kette Sd; Robert M. Davidson; Stephanie Seneff

Multisystem interactions are well established in neurological disorders, in spite of conventional views that only the central nervous system (CNS) is impacted. We review evidence for mutual interactions between the immune and nervous systems and show how these seem to be implicated in the origin and progression of nervous system disorders. Well-established immune system triggers leading to autoimmune reactions are considered. Of these, aluminum, a known neurotoxicant, may be of particular importance. We have demonstrated elsewhere that aluminum has the potential to induce damage at a range of levels in the CNS leading to neuronal death, circuit malfunction, and ultimately system failure. Aluminum is widely used as an adjuvant in various vaccine formulations and has been implicated in a multisystem disorder termed ?autoimmune/inflammatory syndrome induced by adjuvants? (ASIA). The implications of aluminum-induced ASIA in some disorders of the CNS are considered.?We propose a unified theory capturing a progression from a local response to a systemic response initiated by disruption of water-based interfaces of exposed cells.


Entropy | 2013

Is Encephalopathy a Mechanism to Renew Sulfate in Autism

Stephanie Seneff; Ann Lauritzen; Robert M. Davidson; Laurie Lentz-Marino

This paper makes two claims: (1) autism can be characterized as a chronic low- grade encephalopathy, associated with excess exposure to nitric oxide, ammonia and glutamate in the central nervous system, which leads to hippocampal pathologies and resulting cognitive impairment, and (2), encephalitis is provoked by a systemic deficiency in sulfate, but associated seizures and fever support sulfate restoration. We argue that impaired synthesis of cholesterol sulfate in the skin and red blood cells, catalyzed by sunlight and nitric oxide synthase enzymes, creates a state of colloidal instability in the blood manifested as a low zeta potential and increased interfacial stress. Encephalitis, while life-threatening, can result in partial renewal of sulfate supply, promoting neuronal survival. Research is cited showing how taurine may not only help protect neurons from hypochlorite exposure, but also provide a source for sulfate renewal. Several environmental factors can synergistically promote the encephalopathy of autism, including the herbicide, glyphosate, aluminum, mercury, lead, nutritional deficiencies in thiamine and zinc, and yeast overgrowth due to excess dietary sugar. Given these facts, dietary and lifestyle changes, including increased sulfur ingestion, organic whole foods, increased sun exposure, and avoidance of toxins such as aluminum, mercury, and lead, may help to alleviate symptoms or, in some instances, to prevent autism altogether.


Peertechz Journal of Biological Research and Development | 2016

Environmental Toxicants and Infant Mortality in the USA

David Kennedy; Stephanie Seneff; Robert M. Davidson; John W. Oller; Boyd E Haley; Roger D Masters

Despite enjoying a high standard of living, the United States ranks 46th among nations reporting infant survival rates to the World Health Organization. Among factors that increase infant mortality are environmental toxicants. Toxic metals such as mercury, aluminum, and lead interact synergistically with fluoride compounds to produce metal fluoride complexes (e.g., AlF3 and AlF4−). Such toxicants act as biophosphate mimetics disrupting biological signaling processes governing development, immune defenses, and ordinary maintenance systems. Sources for the metals include mother’s mercury amalgams, mercury and aluminum in injected medicines, and lead contaminated drinking water. All of them are made even more toxic by fluorides as evidenced recently by water contamination in Flint, Michigan. Fluorides interact with other toxins increasing their harmful impact. Among the interactants are glyphosate and phosphate containing fertilizers that end up in the food and water because of their widespread use in agriculture. The negative synergy for neonates in the U.S. is increased by the hepatitis B injection containing both mercury and aluminum, and infant formula contaminated with aluminum and the glyphosate in genetically modified soy milk reconstituted with water containing fluoride, aluminum, lead, and other toxic substances. The harmful interactions of such chemicals are associated with rising infant mortality in the U.S. We propose, therefore, a modest but urgent policy change: under TSCA §5, silicofluoride addition to public water supplies should be suspended.

Collaboration


Dive into the Robert M. Davidson's collaboration.

Top Co-Authors

Avatar

Stephanie Seneff

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ann Lauritzen

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jingjing Liu

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Laurie Lentz-Marino

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Christopher A. Shaw

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Anthony Samsel

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Lucija Tomljenovic

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge