Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert M. Dorrell is active.

Publication


Featured researches published by Robert M. Dorrell.


Geophysical Research Letters | 2013

First direct measurements of hydraulic jumps in an active submarine density current

Esther J. Sumner; Jeff Peakall; Daniel R. Parsons; Russell B. Wynn; Stephen E. Darby; Robert M. Dorrell; Stephen D. McPhail; James Perrett; A.T. Webb; David White

For almost half a century, it has been suspected that hydraulic jumps, which consist of a sudden decrease in downstream velocity and increase in flow thickness, are an important feature of submarine density currents such as turbidity currents and debris flows. Hydraulic jumps are implicated in major seafloor processes, including changes from channel erosion to fan deposition, flow transformations from debris flow to turbidity current, and large-scale seafloor scouring. We provide the first direct evidence of hydraulic jumps in a submarine density current and show that the observed hydraulic jumps are in phase with seafloor scours. Our measurements reveal strong vertical velocities across the jumps and smaller than predicted decreases in downstream velocity. Thus, we demonstrate that hydraulic jumps need not cause instantaneous and catastrophic deposition from the flow as previously suspected. Furthermore, our unique data set highlights problems in using depth-averaged velocities to calculate densimetric Froude numbers for gravity currents.


Journal of Geophysical Research | 2014

Driven around the bend: Spatial evolution and controls on the orientation of helical bend flow in a natural submarine gravity current

Esther J. Sumner; Jeff Peakall; Robert M. Dorrell; Daniel R. Parsons; Stephen E. Darby; Russell B. Wynn; Stephen D. McPhail; James Perrett; A.T. Webb; David White

Submarine channel systems transport vast amounts of terrestrial sediment into the deep sea. Understanding the dynamics of the gravity currents that create these systems, and in particular how these flows interact with and form bends, is fundamental to predicting system architecture and evolution. Bend flow is characterized by a helical structure and in rivers typically comprises inwardly directed near-bed flow and outwardly directed near-surface flow. Following a decade of debate, it is now accepted that helical flow in submarine channel bends can exhibit a variety of structures including being opposed to that observed in rivers. The new challenge is to understand what controls the orientation of helical flow cells within submarine flows and determines the conditions for reversal. We present data from the Black Sea showing, for the first time, the three-dimensional velocity and density structure of an active submarine gravity current. By calculating the forces acting on the flow we evaluate what controls the orientation of helical flow cells. We demonstrate that radial pressure gradients caused by across-channel stratification of the flow are more important than centrifugal acceleration in controlling the orientation of helical flow. We also demonstrate that non-local acceleration of the flow due to topographic forcing and downstream advection of the cross-stream flow are significant terms in the momentum balance. These findings have major implications for conceptual and numerical models of submarine channel dynamics, because they show that three-dimensional models that incorporate across-channel flow stratification are required to accurately represent curvature-induced helical flow in such systems.


Journal of Geophysical Research | 2011

The structure of the deposit produced by sedimentation of polydisperse suspensions

Robert M. Dorrell; Andrew J. Hogg; Esther J. Sumner; Peter J. Talling

To interpret the deposits from particle-laden flows it is necessary to understand particle settling at their base. In this paper a quantitative model is developed that not only captures how particles settle out of suspension but also the composition of the final deposit in terms of its vertical distribution of grain sizes. The theoretical model is validated by comparison to published experimental data that has been used to interpret the field deposits of submarine sediment-laden flows (Amy et al., 2006). The model explains two intriguing features of the experimental deposits that are also observed in natural deposits. First, deposits commonly have an ungraded, or poorly normally graded, region overlain by a strongly normally graded region. Second, the normalized thickness of the ungraded region increases as the initial concentration of the suspension is increased. In the theoretical model, the poorly normally graded region results from a constant mass flux into the bed that persists until the largest grain size present within the flow has been completely deposited. The effect of increasing the concentration of the initial suspension is to increase the thickness of the poorly graded part of the deposit and to decrease its average grain size. This work suggests that deposits with relatively thick, poorly graded bases can form from relatively high-concentration polydisperse suspensions, when the initial volume fraction of sediment is greater than approximately 20% and indicates that it is important to include these hindered settling effects in models of depositing flows.


Journal of Hydraulic Engineering | 2012

Length and Time Scales of Response of Sediment Suspensions to Changing Flow Conditions

Robert M. Dorrell; Andrew J. Hogg

Turbulent suspensions of sediment are investigated to establish the characteristic length and time scales on which they adjust from one state to another. The suspensions are modeled by using a simple closure for the turbulent fluctuations in which the average flux of sediment is treated as a diffusion process. A key dimensionless settling parameter, which is closely related to the Rouse number, measures the magnitude of the settling to diffusive fluxes of particles. It is shown how the length and time scales on which the suspension responds are a function of the settling parameter and the assumed form of the eddy diffusivity, and that the predictions are broadly in accord with laboratory experiments. It is further established analytically that, in the regimes of the settling parameter much greater or much less than unity, the timescale of response is independent of the form of the eddy diffusivity. This motivates the use of simple eddy diffusivity laws to provide generic insight to the unsteady evolution of complex suspension and sedimentation problems. DOI: 10.1061/(ASCE)HY.1943-7900 .0000532.


Proceedings of the Royal Society B: Biological Sciences | 2014

Hydrodynamics of fossil fishes

Thomas Fletcher; John D. Altringham; Jeff Peakall; Paul B. Wignall; Robert M. Dorrell

From their earliest origins, fishes have developed a suite of adaptations for locomotion in water, which determine performance and ultimately fitness. Even without data from behaviour, soft tissue and extant relatives, it is possible to infer a wealth of palaeobiological and palaeoecological information. As in extant species, aspects of gross morphology such as streamlining, fin position and tail type are optimized even in the earliest fishes, indicating similar life strategies have been present throughout their evolutionary history. As hydrodynamical studies become more sophisticated, increasingly complex fluid movement can be modelled, including vortex formation and boundary layer control. Drag-reducing riblets ornamenting the scales of fast-moving sharks have been subjected to particularly intense research, but this has not been extended to extinct forms. Riblets are a convergent adaptation seen in many Palaeozoic fishes, and probably served a similar hydrodynamic purpose. Conversely, structures which appear to increase skin friction may act as turbulisors, reducing overall drag while serving a protective function. Here, we examine the diverse adaptions that contribute to drag reduction in modern fishes and review the few attempts to elucidate the hydrodynamics of extinct forms.


Journal of Geophysical Research | 2014

The critical role of stratification in submarine channels: Implications for channelization and long runout of flows

Robert M. Dorrell; Stephen E. Darby; Jeff Peakall; Esther J. Sumner; Daniel R. Parsons; Russell B. Wynn

Channelized submarine gravity currents travel remarkable distances, transporting sediment to the distal reaches of submarine fans. However, the mechanisms by which flows can be sustained over these distances remain enigmatic. In this paper we consider two shallow water models the first assumes the flow is unstratified whilst the second uses empirical models to describe vertical stratification, which effects depth averaged mass and momentum transfer. The importance of stratification is elucidated through comparison of modeled flow dynamics. It is found that the vertically stratified model shows the best fit to field data from a channelized field-scale gravity current in the Black Sea. Moreover, the stratified flow is confined by the channel to a much greater degree than the flow in the unstratified model. However, both models fail to accurately represent flow dynamics in the distal end of the system, suggesting current empirical stratification models require improvement to accurately describe field-scale gravity currents. It also highlights the limitations of weakly stratified small-scale experiments in describing field-scale processes. The results suggest that in real-world systems stratification is likely to enable maintenance of velocity and discharge within the channel, thus facilitating sediment suspension over distances of hundreds of kilometers on low seafloor gradients. This explains how flows can travel remarkable distances and transport their sediment to the distal parts of submarine fans.


Geophysical Research Letters | 2015

The inherent instability of leveed seafloor channels

Robert M. Dorrell; Alan Burns; William D. McCaffrey

New analytical models demonstrate that under 2 aggradational flow conditions seafloor channel-levee systems are inherently unstable; both channel area and stability necessarily decrease at long timescales. In time such systems must avulse purely through internal (autogenic) forcing. Although autogenic instabilities likely arise over long enough time for additional allogenic forcing to be expected, channel-levee sensitivity to variations in flow character depends on the prior degree of system evolution. Recalibrated modern Amazon Fan avulsion timings are consistent with this model, challenging accepted interpretations of avulsion triggering.


Computers & Geosciences | 2017

A 3D forward stratigraphic model of fluvial meander-bend evolution for prediction of point-bar lithofacies architecture

Na Yan; Nigel P. Mountney; Luca Colombera; Robert M. Dorrell

Although fundamental types of fluvial meander-bend transformations – expansion, translation, rotation, and combinations thereof – are widely recognised, the relationship between the migratory behaviour of a meander bend, and its resultant accumulated sedimentary architecture and lithofacies distribution remains relatively poorly understood. Three-dimensional data from both currently active fluvial systems and from ancient preserved successions known from outcrop and subsurface settings are limited. To tackle this problem, a 3D numerical forward stratigraphic model – the Point-Bar Sedimentary Architecture Numerical Deduction (PB-SAND) – has been devised as a tool for the reconstruction and prediction of the complex spatio-temporal migratory evolution of fluvial meanders, their generated bar forms and the associated lithofacies distributions that accumulate as heterogeneous fluvial successions. PB-SAND uses a dominantly geometric modelling approach supplemented by process-based and stochastic model components, and is constrained by quantified sedimentological data derived from modern point bars or ancient successions that represent suitable analogues. The model predicts the internal architecture and geometry of fluvial point-bar elements in three dimensions. The model is applied to predict the sedimentary lithofacies architecture of ancient preserved point-bar and counter-point-bar deposits of the middle Jurassic Scalby Formation (North Yorkshire, UK) to demonstrate the predictive capabilities of PB-SAND in modelling 3D architectures of different types of meander-bend transformations. PB-SAND serves as a practical tool with which to predict heterogeneity in subsurface hydrocarbon reservoirs and water aquifers.


Journal of Geophysical Research | 2018

Scaling Analysis of Multipulsed Turbidity Current Evolution With Application to Turbidite Interpretation

Viet Luan Ho; Robert M. Dorrell; Gareth M. Keevil; Alan Burns; William D. McCaffrey

Deposits of submarine turbidity currents, turbidites, commonly exhibit upward‐fining grain size profiles reflecting deposition under waning flow conditions. However, more complex grading patterns such as multiple cycles of inverse‐to‐normal grading are also seen and interpreted as recording deposition under cycles of waxing and waning flow. Such flows are termed multipulsed turbidity currents, and their deposits pulsed or multipulsed turbidites. Pulsing may arise at flow initiation, or following downstream flow combination. Prior work has shown that individual pulses within multipulsed flows are advected forward and merge, such that complex longitudinal velocity profiles eventually become monotonically varying, although transition length scales in natural settings could not be predicted. Here we detail the first high frequency spatial (vertical, streamwise) and temporal measurements of flow velocity and density distribution in multipulsed gravity current experiments. The data support both a process explanation of pulse merging and a phase‐space analysis of transition length scales; in prototype systems, the point of merging corresponds to the transition in any deposit from multipulsed to normally graded turbidites. The scaling analysis is limited to quasi‐horizontal natural settings in which multipulsed flows are generated by sequences of relatively short sediment failures ( 10 km) sequences of breaches or where pulsing arises from combination at confluences of single‐pulsed flows, such flows may be responsible for the pulsing signatures seen in some distal turbidites, >100 km from source.


Geophysical Research Letters | 2018

Particle Size Distribution Controls the Threshold Between Net Sediment Erosion and Deposition in Suspended Load Dominated Flows

Robert M. Dorrell; Lawrence A. Amy; Jeff Peakall; William D. McCaffrey

©2018. American Geophysical Union. All Rights Reserved. The central problem of describing most environmental and industrial flows is predicting when material is entrained into, or deposited from, suspension. The threshold between erosional and depositional flow has previously been modeled in terms of the volumetric amount of material transported in suspension. Here a new model of the threshold is proposed, which incorporates (i) volumetric and particle size limits on a flows ability to transport material in suspension, (ii) particle size distribution effects, and (iii) a new particle entrainment function, where erosion is defined in terms of the power used to lift mass from the bed. While current suspended load transport models commonly use a single characteristic particle size, the model developed herein demonstrates that particle size distribution is a critical control on the threshold between erosional and depositional flow. The new model offers an order of magnitude, or better, improvement in predicting the erosional-depositional threshold and significantly outperforms existing particle-laden flow models.

Collaboration


Dive into the Robert M. Dorrell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Russell B. Wynn

National Oceanography Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge