Robert M. Erdahl
Queen's University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert M. Erdahl.
The Journal of Combinatorics | 1999
Robert M. Erdahl
In 1909, Voronoi conjectured that if some selection of translates of a polytope forms a facet-to-facet tiling of euclidean space, then the polytope is affinely equivalent to the Voronoi polytope for a lattice. He referred to polytopes with this tiling property as parallelohedra, but they are now frequently called parallelotopes. I show that Voronoi?s conjecture holds for the special case where the parallelotope is a zonotope. I also show that the Voronoi polytope for a lattice is a zonotope if and only if the Delaunay tiling for the lattice is a dicing (defined at the beginning of Section 3).
Reports on Mathematical Physics | 1979
Robert M. Erdahl
Abstract We analyze the lower bound method of reduced density matrix theory, a method which obtains a lower bound to the ground state energy of a many-fermion system as well as an approximation to the corresponding reduced density matrix. Our main result is a theorem giving necessary and sufficient conditions for the optimum for the central optimization problem of this method. Based on this theorem we have developed two algorithms for solving this optimization problem. We consider their convergence properties.
The Journal of Combinatorics | 1994
Robert M. Erdahl; Sergei S. Ryshkov
Abstract A lattice dicing is an arrangement of hyperplanes with sufficient regularity so that the vertices of the resulting partition form a lattice. In this paper we introduce the notion of lattice dicing and point out how lattice dicings relate to geometry of numbers. We give a complete description of the possible lattice dicings of R n and n ⩽ 5.
Discrete and Computational Geometry | 1992
Robert M. Erdahl
AbstractLet ℘n be the cone of quadratic function % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVy0df9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lqpe0x% c9q8qqaqFn0dXdir-xcvk9pIe9q8qqaq-xir-f0-yqaqVeLsFr0-vr% 0-vr0xc8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaacaWFgb% GaaGymaiaac6cacaWFGaGaamOzaiabg2da9iaadAgadaWgaaWcbaGa% aGimaaqabaGccqGHRaWkdaaeabqaaiaadAgadaWgaaWcbaGaamyAaa% qabaGccaWG4bWaaSbaaSqaaiaadMgaaeqaaaqabeqaniabggHiLdGc% cqGHRaWkdaaeabqaaiaadAgadaWgaaWcbaGaamyAaiaadQgaaeqaaO% GaamiEamaaBaaaleaacaWGPbaabeaaaeqabeqdcqGHris5aOGaamiE% amaaBaaaleaacaWGQbaabeaakiaacYcacaWGMbWaaSbaaSqaaiaadM% gacaWGQbaabeaakiabg2da9iaadAgadaWgaaWcbaGaamOAaiaadMga% aeqaaOGaaiilaaaa!59ED!
Archive | 2000
Robert M. Erdahl; Beiyan Jin
Reports on Mathematical Physics | 1978
Robert M. Erdahl; Hubert Grudziński
F1. f = f_0 + \sum {f_i x_i } + \sum {f_{ij} x_i } x_j ,f_{ij} = f_{ji} ,
The Journal of Combinatorics | 2001
Robert M. Erdahl; Konstantin A. Rybnikov; Sergei S. Ryshkov
international symposium on voronoi diagrams in science and engineering | 2006
Robert M. Erdahl
on ℝn that satisfy the additional condition % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVy0df9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lqpe0x% c9q8qqaqFn0dXdir-xcvk9pIe9q8qqaq-xir-f0-yqaqVeLsFr0-vr% 0-vr0xc8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaacaWFgb% Gaa8Nmaiaac6cacaWFGaGaamOzaiaacIcacaWG6bGaaiykaeXafv3y% SLgzGmvETj2BSbacfaGae4xzImRaaGimaiaacYcacaWG6bGaeyicI4% 8efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiyqacqqFKeIw% daahaaWcbeqaaiaad6gaaaGccaGGSaaaaa!570C!
Physical Review A | 2001
David A. Mazziotti; Robert M. Erdahl
arXiv: Number Theory | 2001
Robert M. Erdahl; Konstantin Rybnikov
F2. f(z) \geqslant 0,z \in \mathbb{Z}^n ,