Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert M. Johnston is active.

Publication


Featured researches published by Robert M. Johnston.


Enzyme and Microbial Technology | 2000

Biocatalytic preparation of a chiral synthon for a vasopeptidase inhibitor: enzymatic conversion of N2-[N-Phenylmethoxy)carbonyl] L-homocysteinyl]- L-lysine (1- > 1′)-disulfide to [4S-(4I,7I,10aJ)] 1-octahydro-5-oxo-4-[phenylmethoxy)carbonyl]amino]-7H-pyrido-[2,1-b] [1,3]thiazepine-7-carboxylic acid methyl ester by a novel L-lysine ϵ-aminotransferase

Ramesh N. Patel; Amit Banerjee; Venkata B. Nanduri; Steven L. Goldberg; Robert M. Johnston; Ronald L. Hanson; Clyde G. McNamee; David B. Brzozowski; Raphael Y. Ko; Thomas L. LaPorte; Dana L Cazzulino; Shankar Swaminathan; Chien-Kuang Chen; Larry W Parker; John J. Venit

[4S-(4I,7I,10aJ)]1-Octahydro-5-oxo-4-[phenylmethoxy)carbonyl]amino]-7H-pyrido-[2,1-b] [1,3]thiazepine-7-carboxylic acid methyl ester (BMS-199541-01) is a key chiral intermediate for the synthesis of Omapatrilat (BMS-186716), a new vasopeptidease inhibitor under development. By using a selective enrichment culture technique we have isolated a strain of Sphingomonas paucimobilis SC 16113, which contains a novel L-lysine ϵ-aminotransferase. This enzyme catalyzed the oxidation of the ϵ-amino group of lysine in the dipeptide dimer N2-[N[phenyl-methoxy)-carbonyl] L-homocysteinyl] L-lysine)1,1-disulphide (BMS-201391-01) to produce BMS-199541-01. The aminotransferase reaction required α-ketoglutarate as the amino acceptor. Glutamate formed during this reaction was recycled back to α-ketoglutarate by glutamate oxidase from Streptomyces noursei SC 6007. Fermentation processes were developed for growth of S. paucimobilis SC 16113 and S. noursei SC 6007 for the production of L-lysine ϵ-amino transferase and glutamate oxidase, respectively. L-lysine ϵ-aminotransferase was purified to homogeneity and N-terminal and internal peptides sequences of the purified protein were determined. The mol wt of L-lysine ϵ-aminotransferase is 81 000 Da and subunit size is 40 000 Da. L-lysine ϵ-aminotransferase gene (lat gene) from S. paucimobilis SC 16113 was cloned and overexpressed in Escherichia coli. Glutamate oxidase was purified to homogeneity from S. noursei SC 6003. The mol wt of glutamate oxidase is 125 000 Da and subunit size is 60 000 Da. The glutamate oxiadase gene from S. noursei SC 6003 was cloned and expressed in Streptomyces lividans. The biotransformation process was developed for the conversion of BMS-201391-01 to BMS-199541-01 by using L-lysine ϵ-aminotransferase expressed in E. coli. In the biotransformation process, for conversion of BMS-201391-01 (CBZ protecting group) to BMS-199541-01, a reaction yield of 65–70 M% was obtained depending upon reaction conditions used in the process. Phenylacetyl or phenoxyacetyl protected analogues of BMS-201391-01 also served as substrates for L-lysine ϵ-aminotransferase giving reaction yields of 70 M% for the corresponding BMS-199541-01 analogs. Two other dipeptides N-[N[(phenylmethoxy)carbonyl]-L-methionyl]-L-lysine (BMS-203528) and N,2-[S-acetyl-N-[(phenylmethoxy)carbonyl]-L-homocysteinyl]-L-lysine (BMS-204556) were also substrates for L-lysine ϵ-aminotransferase. N-α-protected (CBZ or BOC)-L-lysine were also oxidized by L-lysine ϵ-aminotransferase.


Journal of Industrial Microbiology & Biotechnology | 2003

Enzymatic synthesis of chiral intermediates for pharmaceuticals

Ramesh N. Patel; Ronald L. Hanson; Animesh Goswami; Venkata B. Nanduri; Amit Banerjee; Mary-Jo Donovan; Steven L. Goldberg; Robert M. Johnston; David B. Brzozowski; Jeffrey M. Howell; Dana L Cazzulino; Rapheal Ko

There has been an increasing awareness of the enormous potential of microorganisms and enzymes for the transformation of synthetic chemicals with high chemo-, regio- and enatioselective manner. Chiral intermediates are in high demand by pharmaceutical industries for the preparation bulk drug substances. In this review article, microbial/enzymatic processes for the synthesis of chiral intermediates for antihypertensive drugs, melatonin receptor agonists, and β3-receptor receptor agonists are described.


Enzyme and Microbial Technology | 2011

Enzymatic preparation of 5-hydroxy-l-proline, N-Cbz-5-hydroxy-l-proline, and N-boc-5-hydroxy-l-proline from (α-N-protected)-l-ornithine using a transaminase or an amine oxidase

Ronald L. Hanson; Robert M. Johnston; Steven L. Goldberg; William L. Parker; Ramesh N. Patel

N-Cbz-4,5-dehydro-L-prolineamide or N-Boc-4,5-dehydro-L-prolineamide are alternative key intermediates for the synthesis of saxagliptin, a dipeptidyl peptidase IV (DPP4) inhibitor recently approved for treatment of type 2 diabetes mellitus. An efficient biocatalytic method was developed for conversion of L-ornithine, N-α-benzyloxycarbonyl (Cbz)-L-ornthine, and N-α-tert-butoxycarbonyl (Boc)-L-ornithine to 5-hydroxy-L-proline, N-Cbz-5-hydroxy-L-proline, and N-Boc-5-hydroxy-L-proline, respectively. Rec. Escherichia coli expressing lysine-ε-aminotransferase and rec Pichia pastoris expressing L-ornithine oxidase were used for these conversions. N-Cbz-5-hydroxy-L-proline, and N-Boc-5-hydroxy-L-proline were chemically converted to key intermediates N-Cbz-4,5-dehydro-L-prolineamide and N-Boc-4,5-dehydro-L-prolineamide, respectively.


Bioconjugate Chemistry | 2016

Biotechnology Based Process for Production of a Disulfide-Bridged Peptide

Animesh Goswami; Steven L. Goldberg; Ronald L. Hanson; Robert M. Johnston; Olav Lyngberg; Yeung Y. Chan; Ehrlic Lo; Steven H. Chan; Nuria de Mas; Antonio Ramirez; Richard Doyle; Wei Ding; Mian Gao; Stanley R. Krystek; Changhong Wan; Yeoun jin Kim; Deepa Calambur; Mark R. Witmer; James W. Bryson

A disulfide-bridged peptide drug development candidate contained two oligopeptide chains with 11 and 12 natural amino acids joined by a disulfide bond at the N-terminal end. An efficient biotechnology based process for the production of the disulfide-bridged peptide was developed. Initially, the two individual oligopeptide chains were prepared separately by designing different fusion proteins and expressing them in recombinant E. coli. Enzymatic or chemical cleavage of the two fusion proteins provided the two individual oligopeptide chains which could be conjugated via disulfide bond by conventional chemical reaction to the disulfide-bridged peptide. A novel heterodimeric system to bring the two oligopeptide chains closer and induce disulfide bond formation was designed by taking advantage of the self-assembly of a leucine zipper system. The heterodimeric approach involved designing fusion proteins with the acidic and basic components of the leucine zipper, additional amino acids to optimize interaction between the individual chains, specific cleavage sites, specific tag to ensure separation, and two individual oligopeptide chains. Computer modeling was used to identify the nature and number of amino acid residue to be inserted between the leucine zipper and oligopeptides for optimum interaction. Cloning and expression in rec E. coli, fermentation, followed by cell disruption resulted in the formation of heterodimeric protein with the interchain disulfide bond. Separation of the desired heterodimeric protein, followed by specific cleavage at methionine by cyanogen bromide provided the disulfide-bridged peptide.


Tetrahedron-asymmetry | 2004

Enantioselective microbial reduction of substituted acetophenones

Ramesh N. Patel; Animesh Goswami; Linda Chu; Mary Jo Donovan; Venkata B. Nanduri; Steven L. Goldberg; Robert M. Johnston; Prasad J Siva; Brent Nielsen; Junying Fan; Weixuan He; Zhongping Shi; Kwok Y Wang; Ronald F Eiring; Dana L Cazzulino; Ambarish K. Singh; Richard H. Mueller


Archive | 2002

Stereoselective reduction of substituted acetophenone

Ramesh N. Patel; Animesh Goswami; Linda N. Chu; Venkata B. Nanduri; Steven L. Goldberg; Robert M. Johnston; Mary Jo Donovan; K. David Mirfakhrae


Organic Process Research & Development | 2008

Enzymatic Preparation of a D-Amino Acid from a Racemic Amino Acid or Keto Acid

Ronald L. Hanson; Brian L Davis; Steven L. Goldberg; Robert M. Johnston; William L. Parker; Michael A. Montana; Ramesh N. Patel


Enzyme and Microbial Technology | 2006

Enantioselective microbial reduction of 6-oxo-8-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]-8-azaspiro[4.5]decane-7,9-dione : Cloning and expression of reductases

Steven L. Goldberg; Venkata B. Nanduri; Linda Chu; Robert M. Johnston; Ramesh N. Patel


Organic Process Research & Development | 2013

Enzymatic Preparation of an R-Amino Acid Intermediate for a γ-Secretase Inhibitor

Ronald L. Hanson; Robert M. Johnston; Steven L. Goldberg; William L. Parker; Animesh Goswami


Enzyme and Microbial Technology | 2009

Hydroxylation of L-proline to cis-3-hydroxy-L-proline by recombinant Escherichia coli expressing a synthetic L-proline-3-hydroxylase gene

Robert M. Johnston; Linda N. Chu; Mark Liu; Steven L. Goldberg; Animesh Goswami; Ramesh N. Patel

Collaboration


Dive into the Robert M. Johnston's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge