Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert M. Larkin is active.

Publication


Featured researches published by Robert M. Larkin.


The Plant Cell | 2002

Signal Transduction between the Chloroplast and the Nucleus

Marci Surpin; Robert M. Larkin; Joanne Chory

Chloroplasts are essential for the unique photoautotrophic and sessile existence of higher plants. Chloroplasts account for >50% of the total soluble protein in leaves, and these proteins are encoded by both nuclear and chloroplast genomes. This separation of genetic information necessitates


Proceedings of the National Academy of Sciences of the United States of America | 2008

A membrane-tethered transcription factor defines a branch of the heat stress response in Arabidopsis thaliana

Hongbo Gao; Federica Brandizzi; Christoph Benning; Robert M. Larkin

In plants, heat stress responses are controlled by heat stress transcription factors that are conserved among all eukaryotes and can be constitutively expressed or induced by heat. Heat-inducible transcription factors that are distinct from the “classical” heat stress transcription factors have also been reported to contribute to heat tolerance. Here, we show that bZIP28, a gene encoding a putative membrane-tethered transcription factor, is up-regulated in response to heat and that a bZIP28 null mutant has a striking heat-sensitive phenotype. The heat-inducible expression of genes that encode BiP2, an endoplasmic reticulum (ER) chaperone, and HSP26.5-P, a small heat shock protein, is attenuated in the bZIP28 null mutant. An estradiol-inducible bZIP28 transgene induces a variety of heat and ER stress-inducible genes. Moreover, heat stress appears to induce the proteolytic release of the predicted transcription factor domain of bZIP28 from the ER membrane, thereby causing its redistribution to the nucleus. These findings indicate that bZIP28 is an essential component of a membrane-tethered transcription factor–based signaling pathway that contributes to heat tolerance.


The Plant Cell | 2007

Plastid Signals Remodel Light Signaling Networks and Are Essential for Efficient Chloroplast Biogenesis in Arabidopsis

Michael E. Ruckle; Stephanie M. DeMarco; Robert M. Larkin

Plastid signals are among the most potent regulators of genes that encode proteins active in photosynthesis. Plastid signals help coordinate the expression of the nuclear and chloroplast genomes and the expression of genes with the functional state of the chloroplast. Here, we report the isolation of new cryptochrome1 (cry1) alleles from a screen for Arabidopsis thaliana genomes uncoupled mutants, which have defects in plastid-to-nucleus signaling. We also report genetic experiments showing that a previously unidentified plastid signal converts multiple light signaling pathways that perceive distinct qualities of light from positive to negative regulators of some but not all photosynthesis-associated nuclear genes (PhANGs) and change the fluence rate response of PhANGs. At least part of this remodeling of light signaling networks involves converting HY5, a positive regulator of PhANGs, into a negative regulator of PhANGs. We also observed that mutants with defects in both plastid-to-nucleus and cry1 signaling exhibited severe chlorophyll deficiencies. These data show that the remodeling of light signaling networks by plastid signals is a mechanism that plants use to integrate signals describing the functional and developmental state of plastids with signals describing particular light environments when regulating PhANG expression and performing chloroplast biogenesis.


The Plant Cell | 2011

GUN4-Porphyrin Complexes Bind the ChlH/GUN5 Subunit of Mg-Chelatase and Promote Chlorophyll Biosynthesis in Arabidopsis

Neil D. Adhikari; John E. Froehlich; Deserah D. Strand; Stephanie M. Buck; David M. Kramer; Robert M. Larkin

We show that GUN4-porphyrin complexes help to channel protoporphyrin IX into chlorophyll biosynthesis by binding to the ChlH subunit of Mg-chelatase with a higher affinity than unliganded GUN4 on Arabidopsis chloroplast membranes. GUN4 and ChlH used distinct mechanisms to associate with chloroplast membranes, and mutant alleles of GUN4 and Mg-chelatase subunit genes cause sensitivity to intense light. The GENOMES UNCOUPLED4 (GUN4) protein stimulates chlorophyll biosynthesis by activating Mg-chelatase, the enzyme that commits protoporphyrin IX to chlorophyll biosynthesis. This stimulation depends on GUN4 binding the ChlH subunit of Mg-chelatase and the porphyrin substrate and product of Mg-chelatase. After binding porphyrins, GUN4 associates more stably with chloroplast membranes and was proposed to promote interactions between ChlH and chloroplast membranes—the site of Mg-chelatase activity. GUN4 was also proposed to attenuate the production of reactive oxygen species (ROS) by binding and shielding light-exposed porphyrins from collisions with O2. To test these proposals, we first engineered Arabidopsis thaliana plants that express only porphyrin binding–deficient forms of GUN4. Using these transgenic plants and particular mutants, we found that the porphyrin binding activity of GUN4 and Mg-chelatase contribute to the accumulation of chlorophyll, GUN4, and Mg-chelatase subunits. Also, we found that the porphyrin binding activity of GUN4 and Mg-chelatase affect the associations of GUN4 and ChlH with chloroplast membranes and have various effects on the expression of ROS-inducible genes. Based on our findings, we conclude that ChlH and GUN4 use distinct mechanisms to associate with chloroplast membranes and that mutant alleles of GUN4 and Mg-chelatase genes cause sensitivity to intense light by a mechanism that is potentially complex.


Plant Physiology | 2012

Plastids Are Major Regulators of Light Signaling in Arabidopsis

Michael E. Ruckle; Lyle D. Burgoon; Lauren A. Lawrence; Christopher A. Sinkler; Robert M. Larkin

We previously provided evidence that plastid signaling regulates the downstream components of a light signaling network and that this signal integration coordinates chloroplast biogenesis with both the light environment and development by regulating gene expression. We tested these ideas by analyzing light- and plastid-regulated transcriptomes in Arabidopsis (Arabidopsis thaliana). We found that the enrichment of Gene Ontology terms in these transcriptomes is consistent with the integration of light and plastid signaling (1) down-regulating photosynthesis and inducing both repair and stress tolerance in dysfunctional chloroplasts and (2) helping coordinate processes such as growth, the circadian rhythm, and stress responses with the degree of chloroplast function. We then tested whether factors that contribute to this signal integration are also regulated by light and plastid signals by characterizing T-DNA insertion alleles of genes that are regulated by light and plastid signaling and that encode proteins that are annotated as contributing to signaling, transcription, or no known function. We found that a high proportion of these mutant alleles induce chloroplast biogenesis during deetiolation. We quantified the expression of four photosynthesis-related genes in seven of these enhanced deetiolation (end) mutants and found that photosynthesis-related gene expression is attenuated. This attenuation is particularly striking for Photosystem II subunit S expression. We conclude that the integration of light and plastid signaling regulates a number of END genes that help optimize chloroplast function and that at least some END genes affect photosynthesis-related gene expression.


New Phytologist | 2009

Plastid signals that affect photomorphogenesis in Arabidopsis thaliana are dependent on GENOMES UNCOUPLED 1 and cryptochrome 1.

Michael E. Ruckle; Robert M. Larkin

When plastids experience dysfunction they emit signals that help coordinate nuclear gene expression with their functional state. One of these signals can remodel a light-signaling network that regulates the expression of nuclear genes that encode particular antenna proteins of photosystem II. These findings led us to test whether plastid signals might impact other light-regulated processes. Photomorphogenesis was monitored in genomes uncoupled 1 (gun1), cryptochrome 1 (cry1), and long hypocotyl 5 (hy5), which have defects in light and plastid signaling, by growing Arabidopsis thaliana seedlings under various light conditions and either treating or not treating them with antibiotics that induce chloroplast dysfunction and trigger plastid signaling. It was found that plastid signals that depend on GUN1 can affect cotyledon opening and expansion, anthocyanin biosynthesis, and hypocotyl elongation. We also found that plastid signals that depend on CRY1 can regulate cotyledon expansion and development. Our findings suggest that plastid signals triggered by plastid dysfunction can broadly affect photomorphogenesis and that plastid and light signaling can promote or antagonize each other, depending on the responses studied. These data suggest that GUN1 and cry 1 help to integrate chloroplast function with photomorphogenesis.


Journal of Biological Chemistry | 2009

Porphyrins Promote the Association of GENOMES UNCOUPLED 4 and a Mg-chelatase Subunit with Chloroplast Membranes

Neil D. Adhikari; Robert Orler; Joanne Chory; John E. Froehlich; Robert M. Larkin

In plants, chlorophylls and other tetrapyrroles are synthesized from a branched pathway that is located within chloroplasts. GUN4 (GENOMES UNCOUPLED 4) stimulates chlorophyll biosynthesis by activating Mg-chelatase, the enzyme that commits porphyrins to the chlorophyll branch. GUN4 stimulates Mg-chelatase by a mechanism that involves binding the ChlH subunit of Mg-chelatase, as well as a substrate (protoporphyrin IX) and product (Mg-protoporphyrin IX) of Mg-chelatase. We chose to test whether GUN4 might also affect interactions between Mg-chelatase and chloroplast membranes, the site of chlorophyll biosynthesis. To test this idea, we induced chlorophyll precursor levels in purified pea chloroplasts by feeding these chloroplasts with 5-aminolevulinic acid, determined the relative levels of GUN4 and Mg-chelatase subunits in soluble and membrane-containing fractions derived from these chloroplasts, and quantitated Mg-chelatase activity in membranes isolated from these chloroplasts. We also monitored GUN4 levels in the soluble and membrane-containing fractions derived from chloroplasts fed with various porphyrins. Our results indicate that 5-aminolevulinic acid feeding stimulates Mg-chelatase activity in chloroplast membranes and that the porphyrin-bound forms of GUN4 and possibly ChlH associate most stably with chloroplast membranes. These findings are consistent with GUN4 stimulating chlorophyll biosynthesis not only by activating Mg-chelatase but also by promoting interactions between ChlH and chloroplast membranes.


Journal of Biological Chemistry | 1998

Two Small Subunits in Arabidopsis RNA Polymerase II Are Related to Yeast RPB4 and RPB7 and Interact with One Another

Robert M. Larkin; Tom J. Guilfoyle

An Arabidopsis cDNA (AtRPB15.9) that encoded a protein related to the RPB4 subunit in yeast RNA polymerase II was cloned. The predicted molecular mass of 15.9 kDa for the AtRPB15.9 protein was significantly smaller than 25 kDa for yeast RBP4. In SDS-PAGE, AtRPB15.9 migrated as the seventh or eighth largest subunit (i.e. apparent molecular mass of 14–15 kDa) inArabidopsis RNA polymerase II, whereas RPB4 migrates as the fourth largest subunit (i.e. apparent molecular mass of 32 kDa) in yeast RNA polymerase II. Unlike yeast RPB4 and RPB7, which dissociate from RNA polymerase II under mildly denaturing conditions, plant subunits related to RPB4 and RPB7 are more stably associated with the enzyme. Recombinant AtRPB15.9 formed stable complexes with AtRPB19.5 (i.e. a subunit related to yeast RPB7) in vitro as did recombinant yeast RPB4 and RPB7 subunits. Stable heterodimers were also formed between AtRPB15.9 and yeast RPB7 and between yeast RPB4 and AtRPB19.5.


Nature Genetics | 2017

Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction

Xia Wang; Yuantao Xu; Siqi Zhang; Li Cao; Yue Huang; Junfeng Cheng; Guizhi Wu; Shilin Tian; Chunli Chen; Yan Liu; Huiwen Yu; Xiaoming Yang; Hong Lan; Nan Wang; Lun Wang; Jidi Xu; Xiaolin Jiang; Zongzhou Xie; Meilian Tan; Robert M. Larkin; Ling-Ling Chen; Bin-Guang Ma; Yijun Ruan; Xiuxin Deng; Qiang Xu

The emergence of apomixis—the transition from sexual to asexual reproduction—is a prominent feature of modern citrus. Here we de novo sequenced and comprehensively studied the genomes of four representative citrus species. Additionally, we sequenced 100 accessions of primitive, wild and cultivated citrus. Comparative population analysis suggested that genomic regions harboring energy- and reproduction-associated genes are probably under selection in cultivated citrus. We also narrowed the genetic locus responsible for citrus polyembryony, a form of apomixis, to an 80-kb region containing 11 candidate genes. One of these, CitRWP, is expressed at higher levels in ovules of polyembryonic cultivars. We found a miniature inverted-repeat transposable element insertion in the promoter region of CitRWP that cosegregated with polyembryony. This study provides new insights into citrus apomixis and constitutes a promising resource for the mining of agriculturally important genes.


Gene | 1999

Arabidopsis thaliana RNA polymerase II subunits related to yeast and human RPB5.

Robert M. Larkin; G. Hagen; Tom J. Guilfoyle

Arabidopsis thaliana contains at least four genes that are predicted to encode polypeptides related to the RPB5 subunit found in yeast and human RNA polymerase II. This subunit has been shown to be the largest subunit common to yeast RNA polymerases I, II, and III (RPABC27). More than one of these genes is expressed in Arabidopsis suspension culture cells, but only one of the encoded polypeptides is found in purified RNA polymerases II and III. This polypeptide has a predicted pI of 9.6, matches 14 of 16 amino acids in the amino terminus of cauliflower RPB5 that was microsequenced, and shows 42 and 53% amino acid sequence identity with the yeast and human RPB5 subunits, respectively.

Collaboration


Dive into the Robert M. Larkin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joanne Chory

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tim Ulmasov

University of Missouri

View shared research outputs
Top Co-Authors

Avatar

Qiang Xu

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiuxin Deng

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hanhui Kuang

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge