Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert M. Nissen is active.

Publication


Featured researches published by Robert M. Nissen.


Nature Genetics | 2002

Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development

Gregory Golling; Adam Amsterdam; Zhaoxia Sun; Marcelo Antonelli; Ernesto Maldonado; Wenbiao Chen; Shawn M. Burgess; Maryann Haldi; Karen Artzt; Sarah Farrington; Shuh-Yow Lin; Robert M. Nissen; Nancy Hopkins

To rapidly identify genes required for early vertebrate development, we are carrying out a large-scale, insertional mutagenesis screen in zebrafish, using mouse retroviral vectors as the mutagen. We will obtain mutations in 450 to 500 different genes—roughly 20% of the genes that can be mutated to produce a visible embryonic phenotype in this species—and will clone the majority of the mutated alleles. So far, we have isolated more than 500 insertional mutants. Here we describe the first 75 insertional mutants for which the disrupted genes have been identified. In agreement with chemical mutagenesis screens, approximately one-third of the mutants have developmental defects that affect primarily one or a small number of organs, body shape or swimming behavior; the rest of the mutants show more widespread or pleiotropic abnormalities. Many of the genes we identified have not been previously assigned a biological role in vivo. Roughly 20% of the mutants result from lesions in genes for which the biochemical and cellular function of the proteins they encode cannot be deduced with confidence, if at all, from their predicted amino-acid sequences. All of the genes have either orthologs or clearly related genes in human. These results provide an unbiased view of the genetic construction kit for a vertebrate embryo, reveal the diversity of genes required for vertebrate development and suggest that hundreds of genes of unknown biochemical function essential for vertebrate development have yet to be identified.


Molecular Cell | 2001

NF-κB Binds P-TEFb to Stimulate Transcriptional Elongation by RNA Polymerase II

Matjaz Barboric; Robert M. Nissen; Satoshi Kanazawa; Nabila Jabrane-Ferrat; B. Matija Peterlin

To stimulate transcriptional elongation of HIV-1 genes, the transactivator Tat recruits the positive transcription elongation factor b (P-TEFb) to the initiating RNA polymerase II (RNAPII). We found that the activation of transcription by RelA also depends on P-TEFb. Similar to Tat, RelA activated transcription when tethered to RNA. Moreover, TNF-alpha triggered the recruitment of P-TEFb to the NF-kappaB-regulated IL-8 gene. While the formation of the transcription preinitiation complex (PIC) remained unaffected, DRB, an inhibitor of P-TEFb, prevented RNAPII from elongating on the IL-8 gene. Remarkably, DRB inhibition sensitized cells to TNF-alpha-induced apoptosis. Thus, NF-kappaB requires P-TEFb to stimulate the elongation of transcription and P-TEFb plays an unexpected role in regulating apoptosis.


Development | 2003

Zebrafish foxi one modulates cellular responses to Fgf signaling required for the integrity of ear and jaw patterning.

Robert M. Nissen; Jizhou Yan; Adam Amsterdam; Nancy Hopkins; Shawn M. Burgess

We identified four insertional alleles of foxi one (foo), an embryonic lethal mutation in zebrafish that displays defects in both otic placode and the jaw. In foo/foo embryos the otic placode is split into two smaller placodes and mutant embryos show a dorsoventral (DV) cartilage defect manifested as a reduced hyomandibular and reduced third and fourth branchial arches. We identified foxi one (foo), the zebrafish ortholog of Foxi1 (FREAC6, FKHL10, HFH-3, Fkh10) and a member of the forkhead domain transcriptional regulator family, as the gene mutated in foo/foo embryos. foo is expressed in otic placode precursor cells, and foo/foo embryos lack placodal pax8 expression and have disorganized otic expression of pax2.1 and dlx3. Third stream neural crest cell migration, detected by dlx2 and krox20 expression, is aberrant in that it invades the otic placode territory. foo is expressed in pharyngeal pouch endoderm and is required for pouch expression of pax8 and proper patterning of other markers in the pouch such as nkx2.3. In foo/foo embryos, we observed a failure to maintain fgf3 expression in the pouches, followed by apoptosis of neural crest cells in adjacent arches. We conclude that foo expression is essential for pax8 expression probably downstream of Fgf signaling in a conserved pathway jointly required for integrity of patterning in the otic placode and pharyngeal pouches. We propose that correct placement of survival/proliferation cues is essential for shaping the pharyngeal cartilages and that evolutionary links between jaw and ear formation can be traced to Fgf-Foxi1-Pax8 pathways.


BMC Developmental Biology | 2006

A zebrafish screen for craniofacial mutants identifies wdr68 as a highly conserved gene required for endothelin-1 expression

Robert M. Nissen; Adam Amsterdam; Nancy Hopkins

BackgroundCraniofacial birth defects result from defects in cranial neural crest (NC) patterning and morphogenesis. The vertebrate craniofacial skeleton is derived from cranial NC cells and the patterning of these cells occurs within the pharyngeal arches. Substantial efforts have led to the identification of several genes required for craniofacial skeletal development such as the endothelin-1 (edn1) signaling pathway that is required for lower jaw formation. However, many essential genes required for craniofacial development remain to be identified.ResultsThrough screening a collection of insertional zebrafish mutants containing approximately 25% of the genes essential for embryonic development, we present the identification of 15 essential genes that are required for craniofacial development. We identified 3 genes required for hyomandibular development. We also identified zebrafish models for Campomelic Dysplasia and Ehlers-Danlos syndrome. To further demonstrate the utility of this method, we include a characterization of the wdr68 gene. We show that wdr68 acts upstream of the edn1 pathway and is also required for formation of the upper jaw equivalent, the palatoquadrate. We also present evidence that the level of wdr68 activity required for edn1 pathway function differs between the 1st and 2nd arches. Wdr68 interacts with two minibrain-related kinases, Dyrk1a and Dyrk1b, required for embryonic growth and myotube differentiation, respectively. We show that a GFP-Wdr68 fusion protein localizes to the nucleus with Dyrk1a in contrast to an engineered loss of function mutation Wdr68-T284F that no longer accumulated in the cell nucleus and failed to rescue wdr68 mutant animals. Wdr68 homologs appear to exist in all eukaryotic genomes. Notably, we found that the Drosophila wdr68 homolog CG14614 could substitute for the vertebrate wdr68 gene even though insects lack the NC cell lineage.ConclusionThis work represents a systematic identification of approximately 25% of the essential genes required for craniofacial development. The identification of zebrafish models for two human disease syndromes indicates that homologs to the other genes are likely to also be relevant for human craniofacial development. The initial characterization of wdr68 suggests an important role in craniofacial development for the highly conserved Wdr68-Dyrk1 protein complexes.


Biochemistry | 1998

D221 IN THYMIDYLATE SYNTHASE CONTROLS CONFORMATION CHANGE, AND THEREBY OPENING OF THE IMIDAZOLIDINE

Carleton R. Sage; Melissa D. Michelitsch; Thomas J. Stout; Donna Biermann; Robert M. Nissen; Janet Finer-Moore; Robert M. Stroud

In thymidylate synthase (TS), the invariant residue Asp-221 provides the only side chain that hydrogen bonds to the pterin ring of the cofactor, 5,10-methylene-5,6,7,8-tetrahydrofolate. All mutants of D221 except cysteine abolish activity. We have determined the crystal structures of two ternary complexes of the Escherichia coli mutant D221N. In a complex with dUMP and the antifolate 10-propargyl-5,8-dideazafolate (CB3717), dUMP is covalently bound to the active site cysteine, as usual. CB3717, which has no imidazolidine ring, is also bound in the usual productive orientation, but is less ordered than in wild-type complexes. The side chain of Asn-221 still hydrogen bonds to N3 of the quinazoline ring of CB3717, which must be in the enol form. In contrast, the structure of D221N with 5-fluoro-dUMP and 5,10-methylene-5,6,7, 8-tetrahydrofolate shows the cofactor bound in two partially occupied, nonproductive binding sites. In both binding modes, the cofactor has a closed imidazolidine ring and adopts the solution conformation of the unbound cofactor. In one of the binding sites, the pterin ring is turned around such that Asn-221 hydrogen bonds to the unprotonated N1 instead of the protonated N3 of the cofactor. This orientation blocks the conformational change required for forming covalent ternary complexes. Taken together, the two crystal structures suggest that the hydrogen bond between the side chain of Asp-221 and N3 of the cofactor is most critical during the early steps of cofactor binding, where it enforces the correct orientation of the pterin ring. Proper orientation of the cofactor appears to be a prerequisite for opening the imidazolidine ring prior to formation of the covalent steady-state intermediate in catalysis.


Genesis | 2009

The zebrafish dyrk1b gene is important for endoderm formation

Gohar Mazmanian; Michael Kovshilovsky; Debbie Yen; Aditya Mohanty; Sudipta Mohanty; Alex Nee; Robert M. Nissen

Nodal‐signaling is required for specification of mesoderm, endoderm, establishing left–right asymmetry, and craniofacial development. Wdr68 is a WD40‐repeat domain‐containing protein recently shown to be required for endothelin‐1 (edn1) expression and subsequent lower jaw development. Previous reports detected the Wdr68 protein in multiprotein complexes containing mammalian members of the dual‐specificity tyrosine‐regulated kinase (dyrk) family. Here we describe the characterization of the zebrafish dyrk1b homolog. We report the detection of a physical interaction between Dyrk1b and Wdr68. We also found perturbations of nodal signaling in dyrk1b antisense morpholino knockdown (dyrk1b‐MO) animals. Specifically, we found reduced expression of lft1 and lft2 (lft1/2) during gastrulation and a near complete loss of the later asymmetric lft1/2 expression domains. Although wdr68‐MO animals did not display lft1/2 expression defects during gastrulation, they displayed a near complete loss of the later asymmetric lft1/2 expression domains. While expression of ndr1 was not substantially effected during gastrulation, ndr2 expression was moderately reduced in dyrk1b‐MO animals. Analysis of additional downstream components of the nodal signaling pathway in dyrk1b‐MO animals revealed modestly expanded expression of the dorsal axial mesoderm marker gsc while the pan‐mesodermal marker bik was largely unaffected. The endodermal markers cas and sox17 were also moderately reduced in dyrk1b‐MO animals. Notably, and similar to defects previously reported for wdr68 mutant animals, we also found reduced expression of the pharyngeal pouch marker edn1 in dyrk1b‐MO animals. Taken together, these data reveal a role for dyrk1b in endoderm formation and craniofacial patterning in the zebrafish. genesis 48:20–30, 2010.


PLOS ONE | 2013

Wdr68 Requires Nuclear Access for Craniofacial Development

Bingyan Wang; Diana Doan; Yanett Roman Petersen; Estibaliz Alvarado; Gregory Alvarado; Ajay Bhandari; Aditya Mohanty; Sudipta Mohanty; Robert M. Nissen

Wdr68 is a highly conserved scaffolding protein required for craniofacial development and left-right asymmetry. A Ras-Map3k-Wdr68-Dyrk1 signaling relay may mediate these and other diverse signaling events important in development and disease. While the sub-cellular localization of Wdr68 has been shown to be dependent on that of its interaction partners, it is not clear where Wdr68 activity is required during development. Here we show that while a GFP-Wdr68 fusion functionally substituted for craniofacial development in the zebrafish, that a Nuclear Export Signal (NES) fusion protein (GFPNESWdr68) failed to support craniofacial development. As control for NES activity, we show that while GFP-Wdr68 exhibited a pan-cellular distribution in C2C12 cells, the GFPNESWdr68 fusion predominantly localized to the cell cytoplasm, as expected. Interestingly, while GFP-Wdr68 and RFP-Dyrk1a co-localized to the cell nucleus as expected based on the known sub-cellular localization for Dyrk1a, we found that the GFPNESWdr68 fusion redistributed RFP-Dyrk1a to the cell cytoplasm potentially disconnecting the Ras/Dyrk1 signal relay from further downstream targets. Consistent with a nuclear role in gene regulation, we also found that while a transcriptional activation domain fusion, CebpFlagWdr68, functionally substituted for endogenous Wdr68 for craniofacial development, that a transcriptional repression domain fusion, MadFlagWdr68, failed to support craniofacial development. Dyrk1b is required for myogenin (myog) expression in differentiating mouse C2C12 cells and here we report that wdr68 is also important for myog expression in differentiating C2C12 cells. Using a C2C12 cell myog promoter-reporter system, we found that Wdr68 overexpression increased reporter activity while moderate expression levels of MadFlagWdr68 interfered with reporter activity. Taken together, these findings support a nuclear role for Wdr68-containing complexes.


PLOS ONE | 2016

Wdr68 Mediates Dorsal and Ventral Patterning Events for Craniofacial Development

Estibaliz Alvarado; Mina Yousefelahiyeh; Greg Alvarado; Robin Shang; Taryn Whitman; Andrew Martinez; Yang Yu; Annie Pham; Anish Bhandari; Bingyan Wang; Robert M. Nissen

Birth defects are among the leading causes of infant mortality and contribute substantially to illness and long-term disability. Defects in Bone Morphogenetic Protein (BMP) signaling are associated with cleft lip/palate. Many craniofacial syndromes are caused by defects in signaling pathways that pattern the cranial neural crest cells (CNCCs) along the dorsal-ventral axis. For example, auriculocondylar syndrome is caused by impaired Endothelin-1 (Edn1) signaling, and Alagille syndrome is caused by defects in Jagged-Notch signaling. The BMP, Edn1, and Jag1b pathways intersect because BMP signaling is required for ventral edn1 expression that, in turn, restricts jag1b to dorsal CNCC territory. In zebrafish, the scaffolding protein Wdr68 is required for edn1 expression and subsequent formation of the ventral Meckel’s cartilage as well as the dorsal Palatoquadrate. Here we report that wdr68 activity is required between the 17-somites and prim-5 stages, that edn1 functions downstream of wdr68, and that wdr68 activity restricts jag1b, hey1, and grem2 expression from ventral CNCC territory. Expression of dlx1a and dlx2a was also severely reduced in anterior dorsal and ventral 1st arch CNCC territory in wdr68 mutants. We also found that the BMP agonist isoliquiritigenin (ISL) can partially rescue lower jaw formation and edn1 expression in wdr68 mutants. However, we found no significant defects in BMP reporter induction or pSmad1/5 accumulation in wdr68 mutant cells or zebrafish. The Transforming Growth Factor Beta (TGF-β) signaling pathway is also known to be important for craniofacial development and can interfere with BMP signaling. Here we further report that TGF-β interference with BMP signaling was greater in wdr68 mutant cells relative to control cells. To determine whether interference might also act in vivo, we treated wdr68 mutant zebrafish embryos with the TGF-β signaling inhibitor SB431542 and found partial rescue of edn1 expression and craniofacial development. While ISL treatment failed, SB431542 partially rescued dlx2a expression in wdr68 mutants. Together these findings reveal an indirect role for Wdr68 in the BMP-Edn1-Jag1b signaling hierarchy and dorso-anterior expression of dlx1a/2a.


Genes & Development | 2000

The glucocorticoid receptor inhibits NFκB by interfering with serine-2 phosphorylation of the RNA polymerase II carboxy-terminal domain

Robert M. Nissen; Keith R. Yamamoto


Development | 2002

A zebrafish sox9 gene required for cartilage morphogenesis

Yi Lin Yan; Craig T. Miller; Robert M. Nissen; Amy Singer; Dong Liu; Anette Kirn; Bruce W. Draper; John J. Willoughby; Paul A. Morcos; Adam Amsterdam; Bon-chu Chung; Monte Westerfield; Pascal Haffter; Nancy Hopkins; Charles B. Kimmel; John H. Postlethwait

Collaboration


Dive into the Robert M. Nissen's collaboration.

Top Co-Authors

Avatar

Adam Amsterdam

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aditya Mohanty

California State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bingyan Wang

California State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge