Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert M. Osipov is active.

Publication


Featured researches published by Robert M. Osipov.


Journal of Cardiovascular Pharmacology | 2009

Effect of hydrogen sulfide in a porcine model of myocardial ischemia-reperfusion: Comparison of different administration regimens and characterization of the cellular mechanisms of protection

Robert M. Osipov; Michael P. Robich; Jun Feng; Yuhong Liu; Richard T. Clements; Hilary P. Glazer; Neel R. Sodha; Csaba Szabo; Cesario Bianchi; Frank W. Sellke

Objective: We investigate the impact of different regimens of parenteral hydrogen sulfide (H2S) administration on myocardium during ischemia-reperfusion (IR) and the molecular pathways involved in its cytoprotective effects. Methods: Eighteen male Yorkshire pigs underwent 60 minutes of mid-left anterior descending coronary artery occlusion followed by 120 minutes of reperfusion. Pigs received either placebo (control, n = 6) or H2S as a bolus (bolus group, n = 6, 0.2 mg/kg over 10 seconds at the start of reperfusion) or as an infusion (infusion group, n = 6, 2 mg·kg−1·h−1 initiated at the onset of ischemia and continued into the reperfusion period). Myocardial function was monitored throughout the experiment. The area at risk and myocardial necrosis was determined by Monastral blue/triphenyl tetrazolium chloride staining. Apoptosis and the expression pattern of various intracellular effector pathways were investigated in the ischemic territory. Coronary microvascular reactivity to endothelium-dependent and endothelium-independent factors was measured. Results: H2S infusion but not bolus administration markedly reduce myocardial infarct size (P < 0.05) and improve regional left ventricular function, as well as endothelium-dependent and endothelium-independent microvascular reactivity (P < 0.05). The expression of B-cell lymphoma 2 (P = 0.059), heat shock protein 27 and αB-crystallin (P < 0.05) were lower in H2S-treated groups. Infusion of H2S caused higher expression of phospho-glycogen synthase kinase-3 β isoform(P < 0.05) and lower expression of mammalian target of rapamycin and apoptosis-inducing factor (P < 0.05). Bolus of H2S caused higher expression of phospho-p44/42 MAPK extracellular signal-regulated kinase and lower expression of Beclin-1 (P < 0.05). The expression of caspase 3 and cleaved caspase 3 were lower (P < 0.05), whereas the expression of phospho-Bad(Ser136) was higher in the bolus group versus control and infusion groups (P < 0.05). The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cell count was lower in both H2S-treated groups compared with the control (P < 0.05). Conclusions: This study demonstrates that infusion of H2S is superior to a bolus alone in reducing myocardial necrosis after IR injury, even though some markers of apoptosis and autophagy were affected in both H2S-treated groups. Thus, the current results indicate that infusion of H2S throughout IR may offer better myocardial protection from IR injury.


Circulation | 2010

Resveratrol Improves Myocardial Perfusion in a Swine Model of Hypercholesterolemia and Chronic Myocardial Ischemia

Michael P. Robich; Robert M. Osipov; Reza Nezafat; Jun Feng; Richard T. Clements; Cesario Bianchi; Munir Boodhwani; Michael A. Coady; Roger J. Laham; Frank W. Sellke

Background— Resveratrol may provide protection against coronary artery disease. We hypothesized that supplemental resveratrol will improve cardiac perfusion in the ischemic territory of swine with hypercholesterolemia and chronic myocardial ischemia. Methods and Results— Yorkshire swine were fed either a normal diet (control, n=7), a hypercholesterolemic diet (HCC, n=7), or a hypercholesterolemic diet with supplemental resveratrol (100 mg/kg/d orally, HCRV, n=7). Four weeks later, an ameroid constrictor was placed on the left circumflex artery. Animals underwent cardiac MRI and coronary angiography 7 weeks later before euthanasia and tissue harvest. Total cholesterol was lowered about 30% in HCRV animals (P<0.001). Regional wall motion analysis demonstrated a significant decrease in inferolateral function from baseline to 7 weeks in HCC swine (P=0.04). There was no significant change in regional function in HCRV swine from baseline to 7 weeks (P=0.32). Tissue blood flow during stress was 2.8-fold greater in HCRV swine when compared with HCC swine (P=0.04). Endothelium-dependent microvascular relaxation response to Substance P was diminished in HCC swine, which was rescued by resveratrol treatment (P=0.004). Capillary density (PECAM-1 staining) demonstrated fewer capillaries in both HCC and HCRV swine versus control swine (P=0.02). Immunoblot analysis demonstrated significantly greater expression in HCRV versus HCC swine of the following markers of angiogenesis: VEGF (P=0.002), peNOS (ser1177) (P=0.04), NFkB (P=0.004), and pAkt (thr308) (P=0.001). Conclusions— Supplemental resveratrol attenuates regional wall motion abnormalities, improves myocardial perfusion in the collateral dependent region, preserves endothelium-dependent coronary vessel function, and upregulates markers of angiogenesis associated with the VEGF signaling pathway.


Circulation | 2009

Effect of Hypercholesterolemia on Myocardial Necrosis and Apoptosis in the Setting of Ischemia-Reperfusion

Robert M. Osipov; Cesario Bianchi; Jun Feng; Richard T. Clements; Yuhong Liu; Michael P. Robich; Hilary P. Glazer; Neel R. Sodha; Frank W. Sellke

Background— Hypercholesterolemia is prevalent in patients who experience myocardial ischemia-reperfusion injury (IR). We investigate the impact of dietary-induced hypercholesterolemia on the myocardium in the setting of acute IR. Methods and Results— In normocholesterolemic (NC, n=7) and hypercholesterolemic (HC, n=7) Yucatan male pigs, the left anterior descending coronary artery was occluded for 60 minutes, followed by reperfusion for 120 minutes. Hemodynamic values were recorded, and TTC staining was used to assess necrosis. Oxidative stress was measured. Specific cell death and survival signaling pathways were assessed by Western blot and TUNEL staining. Infarct size was 45% greater in HC versus NC (42% versus 61%, P<0.05), whereas the area at risk (AAR) was similar in both groups (P=0.61). Whereas global LV function (+dP/dt, P<0.05) was higher during entire period of IR in HC versus NC, regional function deteriorated more following reperfusion in HC (P<0.05). Ischemia increased indices of myocardial oxidative stress such as protein oxidation (P<0.05), lipid peroxidation (P<0.05), and nitrotyrosylation in HC versus NC, as well as the expression of phospho-eNOS (P<0.05). The expression of myeloperoxidase, p38 MAPK, and phospho-p38 MAPK was higher in HC versus NC (all P<05). Ischemia caused higher expression of the proapoptotic protein PARP (P<0.05), and lower expression of the prosurvival proteins Bcl2 (P<0.05), phospho-Akt, (P<0.05), and phospho-PKCϵ (P<0.05) in the HC versus NC. TUNEL-positive cell count was 3.8-fold (P<0.05) higher in the AAR of HC versus NC. Conclusions— This study demonstrates that experimental hypercholesterolemia is associated with increased myocardial oxidative stress and inflammation, attenuation of cell survival pathways, and induction of apoptosis in the ischemic territory, which together may account for the expansion of myocardial necrosis in the setting of acute IR.


Cell Cycle | 2009

Hypercholesterolemia is associated with hyperactive cardiac mTORC1 and mTORC2 signaling

Hilary P. Glazer; Robert M. Osipov; Richard T. Clements; Frank W. Sellke; Cesario Bianchi

Nutritional excess and hyperlipidemia increase the heart’s susceptibility to ischemic injury. Mammalian target of rapamycin (mTOR) controls the cellular response to nutritional status and may play a role in ischemic injury. To explore the effect of hypercholesterolemia on cardiac mTOR signaling, we assessed mTOR signaling in hypercholesterolemic swine (HC) that are also susceptible to increased cardiac ischemia-reperfusion injury. Yucatan pigs were fed a high-fat/high-cholesterol diet for 4 weeks to induce hypercholesterolemia, and mTOR signaling was measured by immunoblotting and immunofluorescence in the non-ischemic left ventricular area. Total myocardial mTOR and raptor levels were markedly increased in the HC group compared to the normocholesterolemic group, and directly correlated with serum cholesterol levels. mTOR exhibited intense perinuclear staining in myocytes only in the HC group. Hypercholesterolemia was associated with hyperactive signaling upstream and downstream of both mTOR complexes, including myocardial Akt, S6K1, 4EBP1, S6, and PKC-alpha, increased levels of cardiac hypertrophy markers, and a trend toward lower levels of myocardial autophagy. Hypercholesterolemia can now be added to the growing list of conditions associated with aberrant mTOR signaling. Hypercholesterolemia produces a unique profile of alterations in cardiac mTOR signaling, which is a potential target in cardiac diseases associated with hypercholesterolemia and nutritional excess.


European Journal of Pharmacology | 2011

Resveratrol modifies risk factors for coronary artery disease in swine with metabolic syndrome and myocardial ischemia

Michael P. Robich; Robert M. Osipov; Louis M. Chu; Yuchi Han; Jun Feng; Reza Nezafat; Richard T. Clements; Warren J. Manning; Frank W. Sellke

Resveratrol has been purported to modify risk factors for obesity and cardiovascular disease. We sought to examine the effects of resveratrol in a porcine model of metabolic syndrome and chronic myocardial ischemia. Yorkshire swine were fed either a normal diet (control), a high cholesterol diet (HCD), or a high cholesterol diet with supplemental resveratrol (HCD-R; 100mg/kg/day) for 11 weeks. After 4 weeks of diet modification a baseline cardiovascular MRI was performed and an ameroid constrictor was placed on the left circumflex coronary artery of each animal to induce chronic myocardial ischemia. At 7 weeks, a second cardiovascular MRI was performed and swine were sacrificed and myocardial tissue harvested. Resveratrol supplementation resulted in lower body mass indices, serum cholesterol, and C-reactive protein levels, improved glucose tolerance and endothelial function, and favorably augmented signaling pathways associated with myocardial metabolism. Interestingly, serum tumor necrosis factor-α levels were not influenced by resveratrol treatment. Immunoblotting for markers of metabolism demonstrated that insulin receptor substrate-1, glucose transporters 1 and 4, and phospho-AMPK were increased in the HCD-R group. Peroxisome proliferator-activated receptor γ and retinol binding protein 4 were downregulated in the HCD-R group as compared to the HCD group. Myocardial perfusion and function at rest as assessed with magnetic resonance imaging were not different between groups. By favorably influencing risk factors, resveratrol may decrease the burden of chronic metabolic disease and improve cardiovascular health.


Interactive Cardiovascular and Thoracic Surgery | 2010

Effect of hydrogen sulfide on myocardial protection in the setting of cardioplegia and cardiopulmonary bypass

Robert M. Osipov; Michael P. Robich; Jun Feng; Vincent Chan; Richard T. Clements; Ralph J. Deyo; Csaba Szabó; Frank W. Sellke

We investigated the impact of hydrogen sulfide (H(2)S) on myocardium in the setting of cold crystalloid cardioplegia and cardiopulmonary bypass (CP/CPB). Eighteen male Yorkshire pigs underwent 1 h CP/CPB followed by 2 h of reperfusion. Pigs received either: placebo (control, n=9), or H(2)S (as NaHS) as a bolus/infusion (bolus/infusion, n=6), or as an infusion (infusion, n=6). The expression pattern of various myocardial effector pathways was investigated. Coronary microvascular relaxation to endothelium-dependent and -independent agonists was assessed. No differences in cardiac function were observed among groups. Endothelium-dependent microvascular relaxation to adenosine diphosphate was improved in the H(2)S bolus/infusion group only (P<0.05). The expression of hemeoxygenase-1, phospho-heat shock proteins27 and phospho-p44/42 MAPK extracellular signal-regulated kinase were higher in H(2)S-treated groups (P<0.05). Phospho-endothelial nitric oxide synthase (P=0.08), phospho-B-cell lymphoma 2 (P=0.09), and phospho-Bad (P=0.06) all displayed a trend to be higher with H(2)S treatment. The expressions of apoptosis inducing factor and Bcl 2/adenovirus E1B 19 kDa-interacting protein were lower in H(2)S treated groups (P<0.05). The microtubule-associated protein 1 light chain 3 ratio was lower in the infusion group vs. control animals (P<0.05). There was a trend for lower phospho-mammalian target of rapamycin expression in the infusion group (P=0.07), whereas phosphorylation of p70S6K1 was higher with H(2)S-treatment (P=0.09). This study demonstrates that H(2)S-treatment may offer biochemical myocardial protection via attenuation of caspase-independent apoptosis and autophagy in the setting of CP/CPB.


Surgery | 2010

Endothelin-1-induced contractile responses of human coronary arterioles via endothelin-A receptors and PKC-α signaling pathways

Jun Feng; Yuhong Liu; Kamal R. Khabbaz; Robert Hagberg; Neel R. Sodha; Robert M. Osipov; Frank W. Sellke

BACKGROUND We investigated the contractile function in responses to endothelin-1 (ET-1) in the human coronary microvasculature as well as the roles of endothelin receptors and protein kinase C-alpha (PKC-alpha) in these responses. METHODS Human atrial tissue was harvested from patients who underwent cardiac surgery pre- and post-cardioplegia (CP)/cardiopulmanory bypass (CPB). Microvascular constriction was assessed in pre- and post-CP/CPB samples in responses to ET-1, in the presence and absence of an endothelin-A (ET-A) receptor antagonist, an endothelin-B (ET-B) receptor antagonist, or a PKC-alpha inhibitor, respectively. The expression and localization of the ET-A and ET-B receptors were also examined using immunoblot and immunofluorescence photomicroscopy. RESULTS The post-CP/CPB contractile response of coronary arterioles to ET-1 was significantly decreased compared with the pre-CP/CPB responses. The response to ET-1 was significantly inhibited in the presence of the ET-A antagonist BQ123 (10(-7)mol/L), but these values remained unchanged with the ET-B receptor antagonist BQ788 (10(-7)mol/L). Pretreatment with the PKC-alpha inhibitor safingol (2.5 x 10(-5) mol/L) reversed the ET-1 responses from contraction into relaxation. The total polypeptide levels of ET-A and ET-B receptors were not altered post-CP/CPB. Immunoblot and immunofluorescent staining displayed strong signals for ET-A receptors and relatively weak signals for ET-B receptors localized on coronary microvasculature. CONCLUSION CP/CPB decreases the contractile function of human coronary microvessels in responses to ET-1. ET-A receptors are predominantly localized in the human coronary microcirculation, whereas ET-B receptors seem to be less abundant. The contractile response to ET-1 is in part through the activation of ET-A receptors and PKC-alpha. These results suggest a role of ET-1-induced contraction in the vasomotor dysfunction after cardiac surgery.


The Journal of Thoracic and Cardiovascular Surgery | 2010

Is hyperglycemia bad for the heart during acute ischemia

Louis M. Chu; Robert M. Osipov; Michael P. Robich; Jun Feng; Shizu Oyamada; Cesario Bianchi; Frank W. Sellke

OBJECTIVE This study investigates the impact of diabetes on myocardium in the setting of acute ischemia-reperfusion in a porcine model. METHODS In normoglycemic (ND group) and alloxan-induced diabetic (DM group) male Yucatan pigs, the left anterior descending coronary artery territory was made ischemic and then reperfused. Hemodynamic values and myocardial function were measured. Monastryl blue and triphenyl tetrazolium chloride staining were used to assess size of the areas at risk and infarction. Glycogen content was assessed using periodic acid-Schiff staining. Cell death and survival signaling pathways were assessed by immunoblotting. RESULTS Mean arterial pressure and developed left ventricular pressure were lower in the DM group (P < .05). Whereas global left ventricular function was worse in the DM group (P < .05), regional function in the area at risk was improved on the horizontal axis (P < .05). Mean infarct size was smaller in the DM versus the ND group (19% vs 43%; P < .05), whereas the area at risk was similar in both groups (34% vs 36%; P = .7). Ischemic myocardium in the DM group displayed more prominent staining for glycogen compared with the ND group. In the area at risk, expression of cell survival proteins including phosphorylated endothelial nitric oxide synthase (0.17 ± 0.04 vs 0.04 ± 0.01; P < .05), heat shock protein 27 (0.7 ± 0.2 vs 0.3 ± 0.1; P < .05), nuclear factor-κB (0.14 ± 0.02 vs 0.03 ± 0.01; P < .05), and mammalian target of rapamycin (0.35 ± 0.05 vs 0.15 ± 0.02; P < .05) were higher in DM animals, whereas in nonischemic tissue, expression of these proteins was similar or lower in the DM group. CONCLUSIONS Although type I diabetes worsens global left ventricular function, it is protective in the ischemic area, leading to increased expression of cell survival proteins and decreased infarct size.


Circulation | 2010

Effects of cardiopulmonary bypass on endothelin-1-induced contraction and signaling in human skeletal muscle microcirculation.

Jun Feng; Louis M. Chu; Michael P. Robich; Richard T. Clements; Kamal R. Khabbaz; Robert Hagberg; Yuhong Liu; Robert M. Osipov; Frank W. Sellke

Background— We investigated the effects of cardiopulmonary bypass (CPB) on the contractile response of human peripheral microvasculature to endothelin-1 (ET-1), examined the role of specific ET receptors and protein kinase C-alpha (PKC-&agr;), and analyzed ET-1-related gene/protein expression in this response. Methods and Results— Human skeletal muscle arterioles (90 to 180 &mgr;m in diameter) were dissected from tissue harvested before and after CPB from 30 patients undergoing cardiac surgery. In vitro contractile response to ET-1 was assessed by videomicroscopy, with and without an endothelin-A (ET-A) receptor antagonist, an endothelin-B (ET-B) antagonist, or a PKC-&agr; inhibitor. The post-CPB contractile response of peripheral arterioles to ET-1 was significantly decreased compared with pre-CPB response. The response to ET-1 was significantly inhibited in the presence of the ET-A antagonist BQ123 but unchanged in the presence of the ET-B receptor antagonist BQ788. Pretreatment with the PKC-&agr; inhibitor safingol reversed ET-1-induced response from contraction to relaxation. The total protein levels of ET-A and ET-B receptors were not altered after CPB. Microarray analysis showed no significant changes in the gene expression of ET receptors, ET-1-related proteins, and protein kinases after CPB. Conclusions— CPB decreases myogenic contractile function of human peripheral arterioles in response to ET-1. The contractile response to ET-1 is through activation of ET-A receptors and PKC-&agr;. CPB has no effects on ET-1-related gene/protein expression. These results provide novel mechanisms of ET-1-induced contraction in the setting of vasomotor dysfunction after cardiac surgery.


The Annals of Thoracic Surgery | 2009

Thrombin Fragment (TP508) Decreases Myocardial Infarction and Apoptosis After Ischemia Reperfusion Injury

Robert M. Osipov; Cesario Bianchi; Richard T. Clements; Jun Feng; Yuhong Liu; Shu-Hua Xu; Michael P. Robich; John Wagstaff; Frank W. Sellke

BACKGROUND Myocardial ischemia-reperfusion injury may lead to cardiac dysfunction or death. This study investigates the potential efficacy of a novel thrombin fragment (TP508) on myocardial ischemia-reperfusion injury. METHODS Fourteen male Yucatan pigs underwent 60 minutes of mid-left anterior descending coronary artery occlusion followed by 120 minutes of reperfusion. Pigs received either saline vehicle (control, n = 7) or thrombin fragment TP508 (n = 7) as a bolus (0.5 mg/kg) 50 minutes into the ischemic period, followed by continuous intravenous infusion (1.25 mg x kg(-1) x h(-1)) during reperfusion. Myocardial function was monitored throughout the experiments. Monastryl blue/triphenyl tetrazolium chloride staining was utilized to measure the area at risk and infarcted tissue. Apoptosis was assessed by Western blotting and dUTP nick-end labeling (TUNEL) staining. Coronary microvascular reactivity to endothelium-dependent factors (adenosine diphosphate, substance P, A23187) and endothelium-independent factor (sodium nitroprusside) was examined. RESULTS Global and regional left ventricular function was not significantly different between groups. Endothelium-dependent coronary microvascular relaxation was greater in the TP508 group and associated with higher endothelial nitric oxide synthase phosphorylation. Both infarct size and TUNEL staining was significantly decreased in the TP508 group compared with the control group (p < 0.05). Expression of the cell survival proteins B-cell lymphoma 2 (2.2-fold, p < 0.05) and heat shock protein-73 (1.6-fold, p < 0.05) was higher in the TP508 group. Expression of the cell-death-signaling proteins poly adenosine diphosphate-ribose polymerase (1.6-fold, p < 0.05), cleaved poly adenosine diphosphate-ribose polymerase (6.4-fold, p < 0.05), and B-cell lymphoma 2/adenovirus E1B 19 kDa-interacting protein 3 (3.8-fold, p < 0.05) was significantly higher in the TP508 group in the ischemic territory. CONCLUSIONS This study demonstrates that TP508 decreases infarct size, improves endothelial microvascular function, and induces cell-survival signaling in the setting of ischemia-reperfusion injury. Thus, TP508 may be a useful agent to attenuate myocardial reperfusion injury.

Collaboration


Dive into the Robert M. Osipov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge