Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert M. Sargis is active.

Publication


Featured researches published by Robert M. Sargis.


Obesity | 2010

Environmental endocrine disruptors promote adipogenesis in the 3T3-L1 cell line through glucocorticoid receptor activation.

Robert M. Sargis; Daniel Johnson; Rashikh A. Choudhury; Matthew J. Brady

The burgeoning obesity and diabetes epidemics threaten health worldwide, yet the molecular mechanisms underlying these phenomena are incompletely understood. Recently, attention has focused on the potential contributions of environmental pollutants that act as endocrine disrupting chemicals (EDCs) in the pathogenesis of metabolic diseases. Because glucocorticoid signaling is central to adipocyte differentiation, the ability of EDCs to stimulate the glucocorticoid receptor (GR) and drive adipogenesis was assessed in the 3T3‐L1 cell line. Various EDCs were screened for glucocorticoid‐like activity using a luciferase reporter construct, and four (bisphenol A (BPA), dicyclohexyl phthalate (DCHP), endrin, and tolylfluanid (TF)) were shown to significantly stimulate GR without significant activation of the peroxisome proliferator‐activated receptor‐γ. 3T3‐L1 preadipocytes were then treated with EDCs and a weak differentiation cocktail containing dehydrocorticosterone (DHC) in place of the synthetic dexamethasone. The capacity of these compounds to promote adipogenesis was assessed by quantitative oil red O staining and immunoblotting for adipocyte‐specific proteins. The four EDCs increased lipid accumulation in the differentiating adipocytes and also upregulated the expression of adipocytic proteins. Interestingly, proadipogenic effects were observed at picomolar concentrations for several of the EDCs. Because there was no detectable adipogenesis when the preadipocytes were treated with compounds alone, the EDCs are likely promoting adipocyte differentiation by synergizing with agents present in the differentiation cocktail. Thus, EDCs are able to promote adipogenesis through the activation of the GR, further implicating these compounds in the rising rates of obesity and diabetes.


Diabetes | 2011

The Paradox of Progress: Environmental Disruption of Metabolism and the Diabetes Epidemic

Brian A. Neel; Robert M. Sargis

As the tide of chemicals born of the Industrial Age has arisen to engulf our environment, a drastic change has come about in the nature of the most serious public health problems.Rachel Carson, Silent Spring , 1962 Worldwide rates of diabetes and other metabolic diseases have exploded over the last several decades. Globally, more than 170 million individuals currently suffer from diabetes, and this number is projected to reach a staggering 366 million by 2030 (1). This scourge results in significant individual morbidity and mortality while contributing to the economic fragility of healthcare systems across the globe. In the U.S. alone, annual costs associated with diabetes are estimated to be


Reproductive Toxicology | 2017

Metabolism disrupting chemicals and metabolic disorders

Jerrold J. Heindel; Bruce Blumberg; Mathew Cave; Ronit Machtinger; Alberto Mantovani; Michelle A. Mendez; Angel Nadal; Paola Palanza; Giancarlo Panzica; Robert M. Sargis; Laura N. Vandenberg; Frederick S. vom Saal

174 billion (2). As such, every effort must be made to understand the factors underlying this emerging metabolic disaster in order to mitigate its deleterious impact on the individual and society. Recently, an expanding body of scientific evidence has begun to link exposure to synthetic chemicals with a wide variety of diseases, including reproductive tract disorders and neurobehavioral diseases. The present work discusses epidemiological links between chemical exposure and disorders of glucose homeostasis, experimental data demonstrating chemical-induced changes in insulin action, and challenges facing the field of metabolic disruption as well as approaches for addressing those challenges. Originally articulated in the early 1990s, the environmental endocrine disruptor theory proposes that some exogenous chemicals interfere with endogenous hormonal axes (3). The recognition of this potential mechanism of action was a paradigm shift in toxicology that had previously focused on a chemical’s capacity to induce acute toxicity or to cause cancer via mutagenesis. The Environmental Protection Agency (EPA) defines an endocrine disrupting chemical (EDC) as “an exogenous agent that interferes with the production, release, transport, metabolism, binding, action, or elimination of natural hormones in the body responsible for the maintenance of …


PLOS ONE | 2012

PCB 126 and other dioxin-like PCBs specifically suppress hepatic PEPCK expression via the aryl hydrocarbon receptor.

Wenshuo Zhang; Robert M. Sargis; Paul A. Volden; Christopher M. Carmean; Xiao J. Sun; Matthew J. Brady

The recent epidemics of metabolic diseases, obesity, type 2 diabetes(T2D), liver lipid disorders and metabolic syndrome have largely been attributed to genetic background and changes in diet, exercise and aging. However, there is now considerable evidence that other environmental factors may contribute to the rapid increase in the incidence of these metabolic diseases. This review will examine changes to the incidence of obesity, T2D and non-alcoholic fatty liver disease (NAFLD), the contribution of genetics to these disorders and describe the role of the endocrine system in these metabolic disorders. It will then specifically focus on the role of endocrine disrupting chemicals (EDCs) in the etiology of obesity, T2D and NAFLD while finally integrating the information on EDCs on multiple metabolic disorders that could lead to metabolic syndrome. We will specifically examine evidence linking EDC exposures during critical periods of development with metabolic diseases that manifest later in life and across generations.


Biochimica et Biophysica Acta | 2014

Adipocytes under assault: Environmental disruption of adipose physiology☆

Shane M. Regnier; Robert M. Sargis

Dioxins and dioxin-like compounds encompass a group of structurally related heterocyclic compounds that bind to and activate the aryl hydrocarbon receptor (AhR). The prototypical dioxin is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a highly toxic industrial byproduct that incites numerous adverse physiological effects. Global commercial production of the structurally similar polychlorinated biphenyls (PCBs), however, commenced early in the 20th century and continued for decades; dioxin-like PCBs therefore contribute significantly to total dioxin-associated toxicity. In this study, PCB 126, the most potent dioxin-like PCB, was evaluated with respect to its direct effects on hepatic glucose metabolism using primary mouse hepatocytes. Overnight treatment with PCB 126 reduced hepatic glycogen stores in a dose-dependent manner. Additionally, PCB 126 suppressed forskolin-stimulated gluconeogenesis from lactate. These effects were independent of acute toxicity, as PCB 126 did not increase lactate dehydrogenase release nor affect lipid metabolism or total intracellular ATP. Interestingly, provision of cells with glycerol instead of lactate as the carbon source completely restored hepatic glucose production, indicating specific impairment in the distal arm of gluconeogenesis. In concordance with this finding, PCB 126 blunted the forskolin-stimulated increase in phosphoenolpyruvate carboxykinase (PEPCK) mRNA levels without affecting glucose-6-phosphatase expression. Myricetin, a putative competitive AhR antagonist, reversed the suppression of PEPCK induction by PCB 126. Furthermore, other dioxin-like PCBs demonstrated similar effects on PEPCK expression in parallel with their ability to activate AhR. It therefore appears that AhR activation mediates the suppression of PEPCK expression by dioxin-like PCBs, suggesting a role for these pollutants as disruptors of energy metabolism.


Biochimica et Biophysica Acta | 2012

The novel endocrine disruptor tolylfluanid impairs insulin signaling in primary rodent and human adipocytes through a reduction in insulin receptor substrate-1 levels

Robert M. Sargis; Brian A. Neel; Clifton O. Brock; Yuxi Lin; Allison T. Hickey; Daniel A. Carlton; Matthew J. Brady

The burgeoning obesity epidemic has placed enormous strains on individual and societal health mandating a careful search for pathogenic factors, including the contributions made by endocrine disrupting chemicals (EDCs). In addition to evidence that some exogenous chemicals have the capacity to modulate classical hormonal signaling axes, there is mounting evidence that several EDCs can also disrupt metabolic pathways and alter energy homeostasis. Adipose tissue appears to be a particularly important target of these metabolic disruptions. A diverse array of compounds has been shown to alter adipocyte differentiation, and several EDCs have been shown to modulate adipocyte physiology, including adipocytic insulin action and adipokine secretion. This rapidly emerging evidence demonstrating that environmental contaminants alter adipocyte function emphasizes the potential role that disruption of adipose physiology by EDCs may play in the global epidemic of metabolic disease. Further work is required to better characterize the molecular targets responsible for mediating the effects of EDCs on adipose tissue. Improved understanding of the precise signaling pathways altered by exposure to environmental contaminants will enhance our understanding of which chemicals pose a threat to metabolic health and how those compounds synergize with lifestyle factors to promote obesity and its associated complications. This knowledge may also improve our capacity to predict which synthetic compounds may alter energy homeostasis before they are released into the environment while also providing critical evidentiary support for efforts to restrict the production and use of chemicals that pose the greatest threat to human metabolic health. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.


Current Diabetes Reports | 2014

Environmental Endocrine Disruption of Energy Metabolism and Cardiovascular Risk

Andrew G. Kirkley; Robert M. Sargis

Emerging data suggest that environmental endocrine disrupting chemicals may contribute to the pathophysiology of obesity and diabetes. In a prior work, the phenylsulfamide fungicide tolylfluanid (TF) was shown to augment adipocyte differentiation, yet its effects on mature adipocyte metabolism remain unknown. Because of the central role of adipose tissue in global energy regulation, the present study tested the hypothesis that TF modulates insulin action in primary rodent and human adipocytes. Alterations in insulin signaling in primary mammalian adipocytes were determined by the phosphorylation of Akt, a critical insulin signaling intermediate. Treatment of primary murine adipose tissue in vitro with 100nM TF for 48h markedly attenuated acute insulin-stimulated Akt phosphorylation in a strain- and species-independent fashion. Perigonadal, perirenal, and mesenteric fat were all sensitive to TF-induced insulin resistance. A similar TF-induced reduction in insulin-stimulated Akt phosphorylation was observed in primary human subcutaneous adipose tissue. TF treatment led to a potent and specific reduction in insulin receptor substrate-1 (IRS-1) mRNA and protein levels, a key upstream mediator of insulins diverse metabolic effects. In contrast, insulin receptor-β, phosphatidylinositol 3-kinase, and Akt expression were unchanged, indicating a specific abrogation of insulin signaling. Additionally, TF-treated adipocytes exhibited altered endocrine function with a reduction in both basal and insulin-stimulated leptin secretion. These studies demonstrate that TF induces cellular insulin resistance in primary murine and human adipocytes through a reduction of IRS-1 expression and protein stability, raising concern about the potential for this fungicide to disrupt metabolism and thereby contribute to the pathogenesis of diabetes.


Molecular Endocrinology | 2013

The Endocrine Disrupting Chemical Tolylfluanid Alters Adipocyte Metabolism via Glucocorticoid Receptor Activation

Brian A. Neel; Matthew J. Brady; Robert M. Sargis

Rates of metabolic diseases have increased at an astounding rate in recent decades. Even though poor diet and physical inactivity are central drivers, these lifestyle changes alone fail to fully account for the magnitude and rapidity of the epidemic. Thus, attention has turned to identifying novel risk factors, including the contribution of environmental endocrine disrupting chemicals. Epidemiologic and preclinical data support a role for various contaminants in the pathogenesis of diabetes. In addition to the vascular risk associated with dysglycemia, emerging evidence implicates multiple pollutants in the pathogenesis of atherosclerosis and cardiovascular disease. Reviewed herein are studies linking endocrine disruptors to these key diseases that drive significant individual and societal morbidity and mortality. Identifying chemicals associated with metabolic and cardiovascular disease as well as their mechanisms of action is critical for developing novel treatment strategies and public policy to mitigate the impact of these diseases on human health.


Obesity | 2015

Tributyltin differentially promotes development of a phenotypically distinct adipocyte.

Shane M. Regnier; Essam El-Hashani; Wakanene Kamau; Xiaojie Zhang; Nicole L. Massad; Robert M. Sargis

Glucocorticoid signaling plays a critical role in regulating energy metabolism. Emerging data implicate environmental endocrine-disrupting chemicals as contributors to the obesity and diabetes epidemics. Previous studies have shown that the phenylsulfamide fungicide tolylfluanid (TF) augments glucocorticoid receptor (GR)-dependent luciferase expression in 3T3-L1 preadipocytes while modulating insulin action in primary murine and human adipocytes. Studies were performed to interrogate glucocorticoid signaling in primary adipocytes exposed to TF. TF mimicked the gene transcription profile of the murine glucocorticoid corticosterone (Cort). Cellular fractionation assays demonstrated that TF treatment promoted the activating serine phosphorylation of GR, augmenting its cytoplasmic-to-nuclear translocation as well as its enrichment at glucocorticoid response elements on the glucocorticoid-induced leucine zipper gene promoter. After acute treatment, Cort or TF promoted insulin receptor substrate-1 (IRS-1) gene and protein expression. Either treatment also enriched GR binding at an identified glucocorticoid response element in the IRS-1 gene. TF or Cort each increased insulin-stimulated lipogenesis, an effect resulting from increased lipogenic gene expression and enhanced insulin-stimulated dephosphorylation of acetyl-coenzyme A carboxylase. The augmentation of insulin-stimulated lipogenesis was mediated through a specific enhancement of Akt phosphorylation at T308. These findings support modulation of IRS-1 levels as a mechanism for glucocorticoid-mediated changes in insulin action in primary adipocytes. Albeit with less affinity than Cort, in silico analysis suggests that TF can interact with the ligand binding pocket of GR. Collectively, these studies identify TF as a structurally unique environmental glucocorticoid. Glucocorticoid signaling may thus represent a novel pathway by which environmental toxicants promote the development of metabolic diseases.


Diabetes & Metabolism Journal | 2014

The Hijacking of Cellular Signaling and the Diabetes Epidemic: Mechanisms of Environmental Disruption of Insulin Action and Glucose Homeostasis

Robert M. Sargis

Environmental endocrine disrupting chemicals (EDCs) are increasingly implicated in the pathogenesis of obesity. Evidence implicates various EDCs as being proadipogenic, including tributyltin (TBT), which activates the peroxisome proliferator activated receptor‐γ (PPARγ). However, the conditions required for TBT‐induced adipogenesis and its functional consequences are incompletely known.

Collaboration


Dive into the Robert M. Sargis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge