Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Martinez is active.

Publication


Featured researches published by Robert Martinez.


The EMBO Journal | 1997

Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway

Tomasz Skorski; Alfonso Bellacosa; Margaret Nieborowska-Skorska; Miroslaw Majewski; Robert Martinez; John K. Choi; Rossana Trotta; Pawel Wlodarski; Danilo Perrotti; Tung O. Chan; Mariusz A. Wasik; Philip N. Tsichlis; Bruno Calabretta

The BCR/ABL oncogenic tyrosine kinase activates phosphatidylinositol 3‐kinase (PI‐3k) by a mechanism that requires binding of BCR/ABL to p85, the regulatory subunit of PI‐3k, and an intact BCR/ABL SH2 domain. SH2 domain BCR/ABL mutants deficient in PI‐3k activation failed to stimulate Akt kinase, a recently identified PI‐3k downstream effector with oncogenic potential, but did activate p21 RAS and p70 S6 kinase. The PI‐3k/Akt pathway is essential for BCR/ABL leukemogenesis as indicated by experiments demonstrating that wortmannin, a PI‐3k specific inhibitor at low concentrations, suppressed BCR/ABL‐dependent colony formation of murine marrow cells, and that a kinase‐deficient Akt mutant with dominant‐negative activity inhibited BCR/ABL‐dependent transformation of murine bone marrow cells in vitro and suppressed leukemia development in SCID mice. In complementation assays using mouse marrow progenitor cells, the ability of transformation‐defective SH2 domain BCR/ABL mutants to induce growth factor‐independent colony formation and leukemia in SCID mice was markedly enhanced by expression of constitutively active Akt. In retrovirally infected mouse marrow cells, the BCR/ABL mutant lacking the SH2 domain was unable to upregulate the expression of c‐Myc and Bcl‐2; in contrast, expression of a constitutively active Akt mutant induced Bcl‐2 and c‐Myc expression, and stimulated the transcription activation function of c‐Myc. Together, these data demonstrate the requirement for the BCR/ABL SH2 domain in PI‐3k activation and document the essential role of the PI‐3k/Akt pathway in BCR/ABL leukemogenesis.


The EMBO Journal | 1998

TLS/FUS, a pro-oncogene involved in multiple chromosomal translocations, is a novel regulator of BCR/ABL-mediated leukemogenesis.

Danilo Perrotti; Silvia Bonatti; Rossana Trotta; Robert Martinez; Tomasz Skorski; Paolo Salomoni; Emanuela Grassilli; Renato V. Iozzo; Denise R. Cooper; Bruno Calabretta

The leukemogenic potential of BCR/ABL oncoproteins depends on their tyrosine kinase activity and involves the activation of several downstream effectors, some of which are essential for cell transformation. Using electrophoretic mobility shift assays and Southwestern blot analyses with a double‐stranded oligonucleotide containing a zinc finger consensus sequence, we identified a 68 kDa DNA‐binding protein specifically induced by BCR/ABL. The peptide sequence of the affinity‐purified protein was identical to that of the RNA‐binding protein FUS (also called TLS). Binding activity of FUS required a functional BCR/ABL tyrosine kinase necessary to induce PKCβII‐dependent FUS phosphorylation. Moreover, suppression of PKCβII activity in BCR/ABL‐expressing cells by treatment with the PKCβII inhibitor CGP53353, or by expression of a dominant‐negative PKCβII, markedly impaired the ability of FUS to bind DNA. Suppression of FUS expression in myeloid precursor 32Dcl3 cells transfected with a FUS antisense construct was associated with upregulation of the granulocyte‐colony stimulating factor receptor (G‐CSFR) and downregulation of interleukin‐3 receptor (IL‐3R) β‐chain expression, and accelerated G‐CSF‐stimulated differentiation. Downregulation of FUS expression in BCR/ABL‐expressing 32Dcl3 cells was associated with suppression of growth factor‐independent colony formation, restoration of G‐CSF‐induced granulocytic differentiation and reduced tumorigenic potential in vivo. Together, these results suggest that FUS might function as a regulator of BCR/ABL leukemogenesis, promoting growth factor independence and preventing differentiation via modulation of cytokine receptor expression.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2009

A synthetic farnesoid X receptor (FXR) agonist promotes cholesterol lowering in models of dyslipidemia

Mark J. Evans; Paige Erin Mahaney; Lisa Borges-Marcucci; KehDih Lai; Shuguang Wang; Julie A. Krueger; Stephen J. Gardell; Christine Huard; Robert Martinez; George P. Vlasuk; Douglas C. Harnish

The nuclear hormone receptor farnesoid X receptor (FXR) plays a critical role in the regulation of bile acid, triglyceride (TG), and cholesterol homeostasis. WAY-362450 (FXR-450/XL335) is a potent synthetic FXR agonist as characterized in luciferase reporter assays and in mediating FXR target gene regulation in primary human and immortalized mouse hepatocytes. In vivo, WAY-362450 dose dependently decreased serum TG levels after 7 days of oral dosing in western diet-fed low-density lipoprotein receptor-/- mice and in the diabetic mouse strains KK-Ay and db/db comparable to that achieved with the peroxisome proliferator activated receptor-alpha agonist, fenofibrate. WAY-362450 treatment also reduced serum cholesterol levels via reductions in LDLc, VLDLc, and HDLc lipoprotein fractions that were not accompanied by hepatic cholesterol accumulation. This cholesterol lowering was dependent on FXR as demonstrated in a hypothyroid-induced hypercholesterolemia setting in FXR-/- mice. In fructose-fed models, WAY-362450 also decreased TG and VLDLc levels in rats and hamsters but significantly increased HDLc levels in rats while reducing HDLc levels in hamsters. The differential effect of WAY-362450 on HDLc is likely due to a murine-specific induction of endothelial lipase and scavenger receptor-BI that does not occur in rats. These studies demonstrate a consistent ability of WAY-362450 to lower both serum TG and cholesterol levels and suggest that synthetic FXR agonists may have clinical utility in the treatment of mixed dyslipidemia.


Journal of Biological Chemistry | 2006

Inhibition of Gluconeogenesis through Transcriptional Activation of EGR1 and DUSP4 by AMP-activated Kinase

Stephen P. Berasi; Christine Huard; Dongmei Li; Heather H. Shih; Ying Sun; Wenyan Zhong; Janet E. Paulsen; Eugene L. Brown; Ruth E. Gimeno; Robert Martinez

Increased hepatic gluconeogenesis is an important contributor to the fasting hyperglycemia found in Type 2 diabetic patients. Low energy states activate the intracellular energy sensor AMP-activated kinase (AMPK). AMPK activation by the AMP mimetic AICAR (5-aminoimidazole-4-carboxamide riboside) has been shown to inhibit hepatic gluconeogenesis. We used transcriptional profiling to search for AICAR-regulated genes in hepatocyte cell lines. We report that a dual specificity phosphatase, Dusp4, is induced by AMPK in AML12, H4IIE, and Fao cells at both mRNA and protein levels. AMPK also induces the immediate early transcription factor Egr1 (early growth response 1), a known transcriptional activator of Dusp4, and it directly binds the Dusp4 promoter at its known binding site. Both reporter gene assays and real time PCR demonstrate that exogenous DUSP4 inhibits the promoter activity and expression of both glucose-6-phosphatase (Glc-6-P) and phosphoenolpyruvate carboxykinase (Pepck) to an extent similar to both AICAR and constitutively active AMPK. Conversely, depletion of EGR1 or DUSP4 using siRNA not only partially abrogates the inhibition of Pepck expression by AICAR, but also importantly affects glucose production by Fao cells. In Fao cells, small interfering RNA targeted EGR1 also depletes DUSP4 expression following treatment with AICAR, further supporting a direct link between EGR1 and DUSP4 activation. Expression of a constitutively active form of p38, a known effector of cAMP-mediated gluconeogenesis, rescues the DUSP4-mediated repression of PEPCK. These results suggest that the inhibition of hepatic gluconeogenesis by AMPK may, in part, be mediated by an immediate early gene response involving EGR1 and its target, DUSP4.


Clinical Cancer Research | 2008

Slug (SNAI2) down-regulation by RNA interference facilitates apoptosis and inhibits invasive growth in neuroblastoma preclinical models.

Roberta Vitali; Camillo Mancini; Cesi; Barbara Tanno; Mariateresa Mancuso; Bossi G; Ying Zhang; Robert Martinez; Bruno Calabretta; Carlo Dominici; Giuseppe Raschellà

Purpose: We assessed the relevance of Slug (SNAI2) for apoptosis resistance and invasion potential of neuroblastoma cells in vitro and in vivo. Experimental Design: We evaluated the effect of imatinib mesylate on invasion and analyzed the genes modulated by imatinib mesylate treatment in neuroblastoma cells. Slug expression, inhibited by imatinib mesylate treatment, was knocked down in neuroblastoma cells by RNA interference, and the effects on invasion and apoptosis were evaluated in vitro. A pseudometastatic model of neuroblastoma in severe combined immunodeficient mice was used to assess the effects of Slug silencing alone or in combination with imatinib mesylate treatment on metastasis development. Results: Microarray analysis revealed that several genes, including Slug, were down-regulated by imatinib mesylate. Slug expression was detectable in 8 of 10 human neuroblastoma cell lines. Two Slug-expressing cell lines were infected with a vector encoding a microRNA to Slug mRNA. Infected cells with reduced levels of Slug were tested for the expression of apoptosis-related genes (p53, Bax, and Bcl-2) identified previously as Slug targets. Bcl-2 was down-regulated in Slug-interfered cells. Slug down-regulation increased sensitivity to apoptosis induced by imatinib mesylate, etoposide, or doxorubicin. Invasion of Slug-silenced cells was reduced in vitro. Animals injected with Slug-silenced cells had fewer tumors than controls and the inhibition of tumor growth was even higher in animals treated with imatinib mesylate. Conclusions: Slug down-regulation facilitates apoptosis induced by proapoptotic drugs in neuroblastoma cells and decreases their invasion capability in vitro and in vivo. Slug inhibition, possibly combined with imatinib mesylate, may represent a novel strategy for treatment of metastatic neuroblastoma.


American Journal of Physiology-cell Physiology | 2009

LOX-1-dependent transcriptional regulation in response to oxidized LDL treatment of human aortic endothelial cells

Mark D. Mattaliano; Christine Huard; Wei Cao; Andrew A. Hill; Wenyan Zhong; Robert Martinez; Doug C. Harnish; Janet E. Paulsen; Heather H. Shih

Oxidized low-density lipoprotein (OxLDL) has been implicated as a proatherogenic factor with a pathological role in the induction of endothelial dysfunction. Endothelial cells bind and uptake OxLDL primarily through the scavenger receptor lectin-like oxidized-low-density lipoprotein receptor-1 (LOX-1), which is believed to mediate critical effects of OxLDL in endothelial cells. To examine the biological events following LOX-1 activation by OxLDL, we used cDNA microarray analysis to globally analyze gene expression changes induced by OxLDL treatment of human aortic endothelial cell line (HAECT) cells overexpressing LOX-1. Consistent with reported functions of OxLDL, in control HAECT cells, OxLDL elicited gene changes in the oxidative stress pathway and other signaling pathways related to OxLDL. With OxLDL treatment, LOX-1-dependent gene expression changes associated with inflammation, cell adhesion, and signal transduction were observed. The transcripts of a number of cytokines and chemokines were induced, which included interleukin-8, CXCL2, CXCL3, and colony-stimulating factor-3. The secretion of these cytokines was confirmed by enzyme-linked immunosorbent assay analysis. In addition, our data revealed a novel link between LOX-1 and a number of genes, including Delta/notch-like epidermal growth factor repeat containing, stanniocalcin-1, cAMP response element modulator, and dual specificity phosphatase 1. Promoter analysis on the genes that changed as a result of LOX-1 activation by OxLDL allowed us to identify early growth response 1 and cAMP response element-binding protein as potential novel transcription factors that function downstream of LOX-1. Our study has enabled us to elucidate the gene expression changes following OxLDL activation of LOX-1 in endothelial cells and discover novel downstream targets for LOX-1.


Journal of Biological Chemistry | 2009

Bidirectional Modulation of Adipogenesis by the Secreted Protein Ccdc80/DRO1/URB *

Frédéric Tremblay; Tracy Revett; Christine Huard; Ying Zhang; James Tobin; Robert Martinez; Ruth E. Gimeno

Adipocyte-secreted proteins play important roles in metabolic regulation through autocrine, paracrine, and endocrine mechanisms. Using transcriptional profiling, we identified coiled-coil domain containing 80 (Ccdc80; also known as DRO1 and URB) as a novel secreted protein highly expressed in white adipose tissue. In 3T3-L1 cells Ccdc80 is expressed and secreted in a biphasic manner with high levels in postconfluent preadipocytes and terminally differentiated adipocytes. To determine whether Ccdc80 regulates adipocyte differentiation, Ccdc80 expression was manipulated using both knockdown and overexpression approaches. Small hairpin RNA-mediated silencing of Ccdc80 in 3T3-L1 cells inhibits adipocyte differentiation. This phenotype was partially reversed by treating the knockdown cells with Ccdc80-containing conditioned medium from differentiated 3T3-L1 cells. Molecular studies indicate that Ccdc80 is required for the full inhibition of T-cell factor-mediated transcriptional activity, down-regulation of Wnt/β-catenin target genes during clonal expansion, and the subsequent induction of C/EBPα and peroxisome proliferator-activated receptor γ. Surprisingly, overexpression of Ccdc80 in 3T3-L1 cells also inhibits adipocyte differentiation without affecting the repression of the Wnt/β-catenin signaling pathway. Taken together, these data suggest that Ccdc80 plays dual roles in adipogenesis by mechanisms that involve at least in part down-regulation of Wnt/β-catenin signaling and induction of C/EBPα and peroxisome proliferator-activated receptor γ.


Journal of Molecular Endocrinology | 2012

Estrogen-related receptor α regulates osteoblast differentiation via Wnt/β-catenin signaling

Kathryn L Auld; Stephen P. Berasi; Yan Liu; Michael Cain; Ying Zhang; Christine Huard; Shoichi Fukayama; Jing Zhang; Sung Choe; Wenyan Zhong; Bheem M. Bhat; Ramesh A. Bhat; Eugene L. Brown; Robert Martinez

Based on its homology to the estrogen receptor and its roles in osteoblast and chondrocyte differentiation, the orphan nuclear receptor estrogen-related receptor α (ERRα (ESRRA)) is an intriguing therapeutic target for osteoporosis and other bone diseases. The objective of this study was to better characterize the molecular mechanisms by which ERRα modulates osteoblastogenesis. Experiments from multiple systems demonstrated that ERRα modulates Wnt signaling, a crucial pathway for proper regulation of bone development. This was validated using a Wnt-luciferase reporter, where ERRα showed co-activator-dependent (peroxisome proliferator-activated receptor gamma co-activator 1α, PGC-1α) stimulatory effects. Interestingly, knockdown of ERRα expression also enhanced WNT signaling. In combination, these data indicated that ERRα could serve to either activate or repress Wnt signaling depending on the presence or absence of its co-activator PGC-1α. The observed Wnt pathway modulation was cell intrinsic and did not alter β-catenin nuclear translocation but was dependent on DNA binding of ERRα. We also found that expression of active ERRα correlated with Wnt pathway effects on osteoblastic differentiation in two cell types, consistent with a role for ERRα in modulating the Wnt pathway. In conclusion, this work identifies ERRα, in conjunction with co-activators such as PGC-1α, as a new regulator of the Wnt-signaling pathway during osteoblast differentiation, through a cell-intrinsic mechanism not affecting β-catenin nuclear translocation.


Medical and Pediatric Oncology | 2001

DR-nm23 expression affects neuroblastoma cell differentiation, integrin expression, and adhesion characteristics.

Roberto Amendola; Robert Martinez; Anna Negroni; Donatella Venturelli; Barbara Tanno; Bruno Calabretta; Giuseppe Raschellà

BACKGROUND AND PROCEDURE Nm23 gene family has been associated with metastasis suppression and differentiation. We studied DR-nm23 during neuroblastoma cells differentiation. DR-nm23 expression increased after retinoic acid induction of differentiation in human cell lines SK-N-SH and LAN-5. RESULTS In several cell lines, overexpression of DR-nm23 was associated with more differentiated phenotypes. SK-N-SH cells increased vimentin expression, increased deposition of collagen type IV, modulated integrin expression, and underwent growth arrest; the murine neuroblastoma cell line N1E-115 showed neurite outgrowth and a striking enhancement of beta1 integrin expression. Up-regulation of beta1 integrin was specifically responsible for the increase in the adhesion to collagen type I-coated plates. Finally, cells overexpressing DR-nm23 were unable to growth in soft agar. CONCLUSIONS In conclusion, DR-nm23 expression is directly involved in differentiation of neuroblastoma cells, and its ability to affects the adhesion to extracellular substrates and to inhibit growth in soft agar suggests an involvement in the metastatic potential of neuroblastoma.


Blood | 2008

Transcriptional repression of c-Myb and GATA-2 is involved in the biologic effects of C/EBPalpha in p210BCR/ABL-expressing cells.

Angela Rachele Soliera; Maria Rosa Lidonnici; Giovanna Ferrari-Amorotti; Marco Prisco; Ying Zhang; Robert Martinez; Nicholas J. Donato; Bruno Calabretta

Ectopic C/EBPalpha expression in p210(BCR/ABL)-expressing hematopoietic cells induces granulocytic differentiation, inhibits proliferation, and suppresses leukemogenesis. To assess the underlying mechanisms, C/EBPalpha targets were identified by microarray analyses. Upon C/EBPalpha activation, expression of c-Myb and GATA-2 was repressed in 32D-BCR/ABL, K562, and chronic myelogenous leukemia (CML) blast crisis (BC) primary cells but only c-Myb levels decreased slightly in CD34(+) normal progenitors. The role of these 2 genes for the effects of C/EBPalpha was assessed by perturbing their expression in K562 cells. Ectopic c-Myb expression blocked the proliferation inhibition- and differentiation-inducing effects of C/EBPalpha, whereas c-Myb siRNA treatment enhanced C/EBPalpha-mediated proliferation inhibition and induced changes in gene expression indicative of monocytic differentiation. Ectopic GATA-2 expression suppressed the proliferation inhibitory effect of C/EBPalpha but blocked in part the effect on differentiation; GATA-2 siRNA treatment had no effects on C/EBPalpha induction of differentiation but inhibited proliferation of K562 cells, alone or upon C/EBPalpha activation. In summary, the effects of C/EBPalpha in p210(BCR/ABL)-expressing cells depend, in part, on transcriptional repression of c-Myb and GATA-2. Since perturbation of c-Myb and GATA-2 expression has nonidentical consequences for proliferation and differentiation of K562 cells, the effects of C/EBPalpha appear to involve dif-ferent transcription-regulated targets.

Collaboration


Dive into the Robert Martinez's collaboration.

Top Co-Authors

Avatar

Bruno Calabretta

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Ying Zhang

Cleveland Clinic Lerner College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Christine Huard

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giovanna Ferrari-Amorotti

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge