Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Michael Rich is active.

Publication


Featured researches published by Robert Michael Rich.


The Astrophysical Journal | 2007

Star Formation in AEGIS Field Galaxies since z = 1.1: The Dominance of Gradually Declining Star Formation, and the Main Sequence of Star-forming Galaxies

Kai G. Noeske; Benjamin J. Weiner; S. M. Faber; Casey Papovich; David C. Koo; Rachel S. Somerville; Kevin Bundy; Christopher J. Conselice; J. A. Newman; David Schiminovich; E. Le Floc'h; Alison L. Coil; G. H. Rieke; Jennifer M. Lotz; Joel R. Primack; P. Barmby; Michael C. Cooper; M. Davis; Richard S. Ellis; Giovanni G. Fazio; Puragra Guhathakurta; Jing Huang; Susan A. Kassin; D. C. Martin; Andrew C. Phillips; Robert Michael Rich; Todd Small; C. A. N. Willmer; Graham Wallace Wilson

We analyze star formation (SF) as a function of stellar mass (M☉) and redshift z in the All-Wavelength Extended Groth Strip International Survey. For 2905 field galaxies, complete to 10^10(10^10.8 )M at z < 0.7(1), with Keck spectroscopic redshifts out to z = 1.1, we compile SF rates (SFRs) from emission lines, GALEX, and Spitzer MIPS 24 µm photometry, optical-NIR M* measurements, and HST morphologies. Galaxies with reliable signs of SF form a distinct “main sequence” (MS), with a limited range of SFRs at a given M* and z (1 σ ≾ ±0.3 dex), and log (SFR) approximately proportional to log M*. The range of log (SFR) remains constant to z > 1, while the MS as a whole moves to higher SFR as z increases. The range of the SFR along the MS constrains the amplitude of episodic variations of SF and the effect of mergers on the SFR. Typical galaxies spend ∼67%(95%) of their lifetime since z = 1 within a factor of ≾2(4) of their average SFR at a given M* and z. The dominant mode of the evolution of SF since z ∼ 1 is apparently a gradual decline of the average SFR in most individual galaxies, not a decreasing frequency of starburst episodes, or a decreasing factor by which SFRs are enhanced in starbursts. LIRGs at z ∼ 1 seem to mostly reflect the high SFR typical for massive galaxies at that epoch. The smooth MS may reflect that the same set of few physical processes governs SF prior to additional quenching processes. A gradual process like gas exhaustion may play a dominant role.


Astrophysical Journal Supplement Series | 2007

The Cosmic Evolution Survey (COSMOS): Overview

N. Z. Scoville; H. Aussel; M. Brusa; P. Capak; C. M. Carollo; M. Elvis; Mauro Giavalisco; L. Guzzo; G. Hasinger; C. D. Impey; Jean-Paul Kneib; O. LeFevre; S. J. Lilly; B. Mobasher; A. Renzini; Robert Michael Rich; D. B. Sanders; E. Schinnerer; D. Schminovich; Patrick Lynn Shopbell; Yoshiaki Taniguchi; Neil De Grasse Tyson

The Cosmic Evolution Survey (COSMOS) is designed to probe the correlated evolution of galaxies, star formation, active galactic nuclei (AGNs), and dark matter (DM) with large-scale structure (LSS) over the redshift range z > 0.5-6. The survey includes multiwavelength imaging and spectroscopy from X-ray-to-radio wavelengths covering a 2 deg^2 area, including HST imaging. Given the very high sensitivity and resolution of these data sets, COSMOS also provides unprecedented samples of objects at high redshift with greatly reduced cosmic variance, compared to earlier surveys. Here we provide a brief overview of the survey strategy, the characteristics of the major COSMOS data sets, and a summary the science goals.


The Astrophysical Journal | 2007

The All-wavelength Extended Groth Strip International Survey (AEGIS) Data Sets

M. Davis; Puragra Guhathakurta; Nicholas P. Konidaris; Jeffrey A. Newman; M. L. N. Ashby; A. D. Biggs; Pauline Barmby; Kevin Bundy; S. C. Chapman; Alison L. Coil; Christopher J. Conselice; Michael C. Cooper; Darren J. Croton; Peter R. M. Eisenhardt; Richard S. Ellis; S. M. Faber; Taotao Fang; Giovanni G. Fazio; A. Georgakakis; Brian F. Gerke; W. M. Goss; Stephen D. J. Gwyn; Justin Harker; Andrew M. Hopkins; Jia-Sheng Huang; R. J. Ivison; Susan A. Kassin; Evan N. Kirby; Anton M. Koekemoer; David C. Koo

In this the first of a series of Letters, we present a panchromatic data set in the Extended Groth Strip region of the sky. Our survey, the All-Wavelength Extended Groth Strip International Survey (AEGIS), aims to study the physical properties and evolutionary processes of galaxies at z ~ 1. It includes the following deep, wide-field imaging data sets: Chandra/ACIS X-ray, GALEX ultraviolet, CFHT/MegaCam Legacy Survey optical, CFHT/CFH12K optical, Hubble Space Telescope/ACS optical and NICMOS near-infrared, Palomar/WIRC near-infrared, Spitzer/IRAC mid-infrared, Spitzer/MIPS far-infrared, and VLA radio continuum. In addition, this region of the sky has been targeted for extensive spectroscopy using the Deep Imaging Multi-Object Spectrograph (DEIMOS) on the Keck II 10 m telescope. Our survey is compared to other large multiwavelength surveys in terms of depth and sky coverage.


Astronomy and Astrophysics | 2003

Age and metallicity distribution of the Galactic bulge from extensive optical and near-IR stellar photometry

M. Zoccali; Alvio Renzini; Sergio Ortolani; Laura Greggio; Ivo Saviane; Santi Cassisi; M. Rejkuba; Beatriz Barbuy; Robert Michael Rich; Eduardo Luiz Damiani Bica

We present a new determination of the metallicity distribution, age, and luminosity function of the Galactic bulge stellar population. By combining near-IR data from the 2MASS survey, from the SOFI imager at ESO NTT and the NICMOS camera on board HST we were able to construct color-magnitude diagrams (CMD) and luminosity functions (LF) with large statistics and small photometric errors from the Asymptotic Giant Branch (AGB) and Red Giant Branch (RGB) tip down to ∼0.15 M� . This is the most extended and complete LF so far obtained for the galactic bulge. Similar near-IR data for a disk control field were used to decontaminate the bulge CMDs from foreground disk stars, and hence to set a stronger constraint on the bulge age, which we found to be as large as that of Galactic globular clusters, or >10 Gyr. No trace is found for any younger stellar population. Synthetic CMDs have been constructed to simulate the effect of photometric errors, blending, differential reddening, metallicity dispersion and depth effect in the comparison with the observational data. By combining the near-IR data with optical ones, from the Wide Field Imager at the ESO/MPG 2.2 m telescope, a disk-decontaminated (MK,V-K )C MD has been constructed and used to derive the bulge metallicity distribution, by comparison with empirical RGB templates. The bulge metallicity is found to peak at near solar value, with a sharp cutoff just above solar, and a tail towards lower metallicity that does not appreciably extend below (M/H) ∼− 1.5.


The Astrophysical Journal | 2005

Galaxy evolution explorer ultraviolet color-magnitude relations and evidence of recent star formation in early-type galaxies

Sukyoung K. Yi; Suk-Jin Yoon; Sugata Kaviraj; J.-M. Deharveng; Robert Michael Rich; Samir Salim; A. Boselli; Young-Wook Lee; Chang Hee Ree; Young-Jong Sohn; Soo-Chang Rey; Jake Lee; Jaehyon Rhee; Luciana Bianchi; Yong-Ik Byun; Jose Donas; Peter G. Friedman; Timothy M. Heckman; Patrick Jelinsky; Barry F. Madore; Roger F. Malina; D. C. Martin; Bruno Milliard; Patrick Morrissey; Susan G. Neff; David Schiminovich; O. H. W. Siegmund; Todd Small; Alexander S. Szalay; M. J. Jee

We have used the Galaxy Evolution Explorer UV photometric data to construct a first near-UV (NUV) color-magnitude relation (CMR) for the galaxies preclassified as early-type by Sloan Digital Sky Survey studies. The NUV CMR is a powerful tool for tracking the recent star formation history in early-type galaxies, owing to its high sensitivity to the presence of young stellar populations. Our NUV CMR for UV-weak galaxies shows a well-defined slope and thus will be useful for interpreting the rest-frame NUV data of distant galaxies and studying their star formation history. Compared to optical CMRs, the NUV CMR shows a substantially larger scatter, which we interpret as evidence of recent star formation activities. Roughly 15% of the recent epoch (z < 0.13) bright [M(r) < -22] early-type galaxies show a sign of recent (1 Gyr) star formation at the 1%-2% level (lower limit) in mass compared to the total stellar mass. This implies that low-level residual star formation was common during the last few billion years even in bright early-type galaxies.


The Astrophysical Journal | 2005

The GALEX-VVDS measurement of the evolution of the far-ultraviolet luminosity density and the cosmic star formation rate

David Schiminovich; O. Ilbert; S. Arnouts; B. Milliard; L. Tresse; O. Le Fèvre; Marie Treyer; Ted K. Wyder; Tamas Budavari; E. Zucca; G. Zamorani; D. C. Martin; C. Adami; M. Arnaboldi; S. Bardelli; Tom A. Barlow; Luciana Bianchi; M. Bolzonella; D. Bottini; Yong-Ik Byun; A. Cappi; T. Contini; S. Charlot; J. Donas; Karl Forster; S. Foucaud; P. Franzetti; Peter G. Friedman; B. Garilli; I. Gavignaud

In a companion paper (Arnouts et al. 2004) we presented new measurements of the galaxy luminosity function at 1500 Angstroms out to z~1 using GALEX-VVDS observations (1039 galaxies with NUV 0.2) and at higher z using existing data sets. In this paper we use the same sample to study evolution of the FUV luminosity density. We detect evolution consistent with a (1+z)^{2.5+/-0.7} rise to z~1 and (1+z)^{0.5+/-0.4} for z>1. The luminosity density from the most UV-luminous galaxies (UVLG) is undergoing dramatic evolution (x30) between 025%) of the total FUV luminosity density at z<1. We measure dust attenuation and star formation rates of our sample galaxies and determine the star formation rate density as a function of redshift, both uncorrected and corrected for dust. We find good agreement with other measures of the SFR density in the rest ultraviolet and Halpha given the still significant uncertainties in the attenuation correction.


Astronomy and Astrophysics | 2002

HST color-magnitude diagrams of 74 galactic globular clusters in the HST F439W and F555W bands ⋆

G. Piotto; Ivan R. King; S. G. Djorgovski; Craig Anthony Sosin; M. Zoccali; Ivo Saviane; F. De Angeli; M. Riello; A. Recio Blanco; Robert Michael Rich; Georges Meylan; Alvio Renzini

We present the complete photometric database and the color-magnitude diagrams for 74 Galactic globular clusters observed with the HST/WFPC2 camera in the F439W and F555W bands. A detailed discussion of the various reduction steps is also presented, and of the procedures to transform instrumental magnitudes into both the HST F439W and F555W flight system and the standard Johnson B and V systems. We also describe the artificial star experiments which have been performed to derive the star count completeness in all the relevant branches of the color magnitude diagram. The entire photometric database and the completeness function will be made available on the Web immediately after the publication of the present paper.


The Astrophysical Journal | 2005

An Intermediate-Mass Black Hole in the Globular Cluster G1: Improved Significance from New Keck and Hubble Space Telescope Observations

Karl Gebhardt; Robert Michael Rich; Luis C. Ho

We present dynamical models for the massive globular cluster G1. The goal is to measure or place a significant upper limit on the mass of any central black hole. Whether or not globular clusters contain central massive black holes has important consequences for a variety of studies. We use new kinematic data obtained with Keck and new photometry from the Hubble Space Telescope (HST). The Keck spectra allow us to obtain kinematics out to large radii that are required to pin down the mass-to-light ratio of the dynamical model and the orbital structure. The HST observations give us a factor of 2 better spatial resolution for the surface brightness profile. By fitting nonparametric, spherical, isotropic models, we find a best-fit black hole mass of 1.7(?0.3) ? 104 M?. Fully general axisymmetric orbit-based models give similar results, with a black hole mass of 1.8(?0.5) ? 104 M?. The no-black-hole model has ??2 = 5 (marginalized over mass-to-light ratio), implying less than 3% significance. We have taken into account any change in the mass-to-light ratio in the center due to stellar remnants. These results are consistent with our previous estimate and inconsistent with the analysis of Baumgardt et al., who claim that G1 does not show evidence for a black hole. These new results make G1 the best example of a cluster that contains an intermediate-mass black hole.


Astrophysical Journal Supplement Series | 2007

The effect of environment on the ultraviolet color-magnitude relation of early-type galaxies

Kevin Schawinski; Sugata Kaviraj; Sadegh Khochfar; Suk-Jin Yoon; Sukyoung K. Yi; J.-M. Deharveng; A. Boselli; Tom A. Barlow; T. Conrow; Karl Forster; Peter G. Friedman; D. C. Martin; Patrick Morrissey; Susan G. Neff; David Schiminovich; Mark Seibert; Todd Small; Ted K. Wyder; Luciana Bianchi; Jose Donas; Timothy M. Heckman; Young-Wook Lee; B. F. Madore; B. Milliard; Robert Michael Rich; Alexander S. Szalay

We use GALEX near-UV (NUV) photometry of a sample of early-type galaxies selected in the SDSS (Sloan Digital Sky Survey) to study the UV color-magnitude relation (CMR). NUV − r color is an excellent tracer of even small amounts (~1% mass fraction) of recent (≲1 Gyr) star formation, and so the NUV − r CMR allows us to study the effect of environment on the recent star formation history. We analyze a volume-limited sample of 839 visually inspected early-type galaxies in the redshift range 0.05 < z < 0.10 brighter than M_r of –21.5 with any possible emission-line or radio-selected active galactic nuclei (AGNs) removed to avoid contamination. We find that contamination by AGN candidates and late-type interlopers highly bias any study of recent star formation in early-type galaxies and that, after removing those, our lower limit to the fraction of massive early-type galaxies showing signs of recent star formation is roughly 30% ± 3% . This suggests that residual star formation is common even among the present day early-type galaxy population. We find that the fraction of UV-bright early-type galaxies is 25% higher in low-density environments. However, the density effect is clear only in the lowest density bin. The blue galaxy fraction for the subsample of the brightest early-type galaxies, however, shows a very strong density dependence, in the sense that the blue galaxy fraction is lower in a higher density region.


The Astrophysical Journal | 2005

The GALEX VIMOS-VLT Deep Survey Measurement of the Evolution of the 1500 Å Luminosity Function

S. Arnouts; David Schiminovich; O. Ilbert; L. Tresse; B. Milliard; Marie Treyer; S. Bardelli; Tamas Budavari; Ted K. Wyder; E. Zucca; O. Le Fèvre; D. C. Martin; Giampaolo Vettolani; C. Adami; M. Arnaboldi; Tom A. Barlow; Luciana Bianchi; M. Bolzonella; D. Bottini; Yong-Ik Byun; A. Cappi; S. Charlot; T. Contini; J. Donas; Karl Forster; Sylvie Foucaud; P. Franzetti; Peter G. Friedman; B. Garilli; I. Gavignaud

We present the first measurement of the galaxy luminosity function (LF) at 1500 A in the range 0.2 ≤ z ≤ 1.2 based on Galaxy Evolution Explorer VIMOS-VLT Deep Survey observations (~1000 spectroscopic redshifts for galaxies with NUV ≤ 24.5) and at higher z using existing data sets. Our main results are summarized as follows: (1) Luminosity evolution is observed with ΔM* ~ -2.0 mag between z = 0 and z = 1 and ΔM* ~ -1.0 mag between z = 1 and z = 3. This confirms that the star formation activity was significantly higher in the past. (2) The LF slopes vary in the range -1.2 ≥ α ≥ -1.65, with a marginally significant hint of increase at higher z. (3) We split the sample in three rest-frame (B - I) intervals, providing an approximate spectral type classification: Sb-Sd, Sd-Irr, and unobscured starbursts. We find that the bluest class evolves less strongly in luminosity than the two other classes. On the other hand, their number density increases sharply with z (~15% in the local universe to ~55% at z ~ 1), while that of the reddest classes decreases.

Collaboration


Dive into the Robert Michael Rich's collaboration.

Top Co-Authors

Avatar

Harvey B. Richer

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

David Schiminovich

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Peter B. Stetson

Dominion Astrophysical Observatory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael M. Shara

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Peter G. Friedman

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge