Robert Mikesell
Washington University in St. Louis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert Mikesell.
Acta Neuropathologica | 2015
Claudia Cantoni; Bryan Bollman; Danilo Licastro; Mingqiang Xie; Robert Mikesell; Robert E. Schmidt; Carla M. Yuede; Daniela Galimberti; Robyn S. Klein; Anne H. Cross; Karel Otero; Laura Piccio
Microglia are phagocytic cells that survey the brain and perform neuroprotective functions in response to tissue damage, but their activating receptors are largely unknown. Triggering receptor expressed on myeloid cells 2 (TREM2) is a microglial immunoreceptor whose loss-of-function mutations in humans cause presenile dementia, while genetic variants are associated with increased risk of neurodegenerative diseases. In myeloid cells, TREM2 has been involved in the regulation of phagocytosis, cell proliferation and inflammatory responses in vitro. However, it is unknown how TREM2 contributes to microglia function in vivo. Here, we identify a critical role for TREM2 in the activation and function of microglia during cuprizone (CPZ)-induced demyelination. TREM2-deficient (TREM2−/−) mice had defective clearance of myelin debris and more axonal pathology, resulting in impaired clinical performances compared to wild-type (WT) mice. TREM2−/− microglia proliferated less in areas of demyelination and were less activated, displaying a more resting morphology and decreased expression of the activation markers MHC II and inducible nitric oxide synthase as compared to WT. Mechanistically, gene expression and ultrastructural analysis of microglia suggested a defect in myelin degradation and phagosome processing during CPZ intoxication in TREM2−/− microglia. These findings place TREM2 as a key regulator of microglia activation in vivo in response to tissue damage.
Multiple Sclerosis Journal | 2013
Enrique Alvarez; Laura Piccio; Robert Mikesell; Eric C. Klawiter; Becky J. Parks; Robert T. Naismith; Anne H. Cross
CXCL13, a B-cell chemokine, has been proposed as a biomarker in a variety of conditions, some of which can mimic multiple sclerosis and can have very high levels. In this case-control study, cerebrospinal fluid (CSF) CXCL13 was elevated in multiple sclerosis, neuromyelitis optica and other inflammatory neurological controls compared with noninflammatory controls. Levels did not differentiate disease groups. For all subjects taken together, CSF CXCL13 correlated with CSF WBC, oligoclonal band numbers, CSF protein, EDSS, and neurofilament levels. In subgroup analyses, CSF CXCL13 correlated with CSF WBC in neuromyelitis optica and IgG index in multiple sclerosis. Additionally, serum CXCL13 was elevated in neuromyelitis optica.
European Journal of Immunology | 2013
Laura Piccio; Claudia Cantoni; Jacob G. Henderson; Daniel Hawiger; Michael J. Ramsbottom; Robert Mikesell; Jiyoon Ryu; Chyi Song Hsieh; Viviana Cremasco; Wesley Haynes; Lily Q. Dong; Lawrence Chan; Daniela Galimberti; Anne H. Cross
Multiple sclerosis (MS) is a presumed autoimmune disease directed against central nervous system (CNS) myelin, in which diet and obesity are implicated as risk factors. Immune responses can be influenced by molecules produced by fat cells, called adipokines. Adiponectin is an adipokine with anti‐inflammatory effects. We tested the hypothesis that adiponectin has a protective role in the EAE model for MS, that can be induced by immunization with myelin antigens or transfer of myelin‐specific T lymphocytes. Adiponectin deficient (ADPKO) mice developed worse EAE with greater CNS inflammation, demyelination, and axon injury. Lymphocytes from myelin‐immunized ADPKO mice proliferated more, produced higher amounts of IFN‐γ, IL‐17, TNF‐α, IL‐6, and transferred more severe EAE than wild type (WT) lymphocytes. At EAE peak, the spleen and CNS of ADPKO had fewer regulatory T (Treg) cells than WT mice and during EAE recovery, Foxp3, IL‐10 and TGF‐β expression levels in the CNS were reduced in ADPKO compared with WT mice. Treatment with globular adiponectin in vivo ameliorated EAE, and was associated with an increase in Treg cells. These data indicate that adiponectin is an important regulator of T‐cell functions during EAE, suggesting a new avenue of investigation for MS treatment.
Journal of Immunology | 2015
Chelsea R. Parker Harp; Angela S. Archambault; Julia Sim; Stephen T. Ferris; Robert Mikesell; Pandelakis A. Koni; Michiko Shimoda; Christopher Linington; John H. Russell; Gregory F. Wu
B cells are increasingly regarded as integral to the pathogenesis of multiple sclerosis, in part as a result of the success of B cell–depletion therapy. Multiple B cell–dependent mechanisms contributing to inflammatory demyelination of the CNS have been explored using experimental autoimmune encephalomyelitis (EAE), a CD4 T cell–dependent animal model for multiple sclerosis. Although B cell Ag presentation was suggested to regulate CNS inflammation during EAE, direct evidence that B cells can independently support Ag-specific autoimmune responses by CD4 T cells in EAE is lacking. Using a newly developed murine model of in vivo conditional expression of MHC class II, we reported previously that encephalitogenic CD4 T cells are incapable of inducing EAE when B cells are the sole APC. In this study, we find that B cells cooperate with dendritic cells to enhance EAE severity resulting from myelin oligodendrocyte glycoprotein (MOG) immunization. Further, increasing the precursor frequency of MOG-specific B cells, but not the addition of soluble MOG-specific Ab, is sufficient to drive EAE in mice expressing MHCII by B cells alone. These data support a model in which expansion of Ag-specific B cells during CNS autoimmunity amplifies cognate interactions between B and CD4 T cells and have the capacity to independently drive neuroinflammation at later stages of disease.
Journal of Autoimmunity | 2011
Gregory F. Wu; Kenneth S. Shindler; Eric J. Allenspach; Tom L. Stephen; Hannah L. Thomas; Robert Mikesell; Anne H. Cross; Terri M. Laufer
Experimental autoimmune encephalomyelitis (EAE), a model for the human disease multiple sclerosis (MS), is dependent upon the activation and effector functions of autoreactive CD4 T cells. Multiple interactions between CD4 T cells and major histocompatibility class II (MHCII)+ antigen presenting cells (APCs) must occur in both the periphery and central nervous system (CNS) to elicit autoimmunity. The identity of the MHCII+ APCs involved throughout this process remains in question. We investigated which APC in the periphery and CNS mediates disease using transgenic mice with MHCII expression restricted to dendritic cells (DCs). MHCII expression restricted to DCs results in normal susceptibility to peptide-mediated EAE. Indeed, radiation-sensitive bone marrow-derived DCs were sufficient for all APC functions during peptide-induced disease. However, DCs alone were inefficient at promoting disease after immunization with the myelin protein myelin oligodendrocyte glycoprotein (MOG), even in the presence of MHCII-deficient B cells. Consistent with a defect in disease induction following protein immunization, antigen presentation by DCs alone was incapable of mediating spontaneous optic neuritis. These results indicate that DCs are capable of perpetuating CNS-targeted autoimmunity when antigens are readily available, but other APCs are required to efficiently initiate pathogenic cognate CD4 T cell responses.
JAMA Neurology | 2010
Eric C. Klawiter; Laura Piccio; Jeri-Anne Lyons; Robert Mikesell; Kevin C. O'Connor; Anne H. Cross
OBJECTIVE To evaluate antibodies to myelin oligodendrocyte glycoprotein (MOG) in the serum and cerebrospinal fluid (CSF) of patients with multiple sclerosis (MS) and control individuals. DESIGN Prospective case-control series. SETTING Academic referral center. PATIENTS Twenty-six controls with noninflammatory neurologic disease and 35 patients with MS donated serum and CSF for recombinant MOG (rMOG) antibody determination. MAIN OUTCOME MEASURES Serum and CSF rMOG antibody and albumin levels were used to calculate an rMOG index. Clinical disability, CSF markers, and magnetic resonance metrics were correlated with the rMOG index. RESULTS The rMOG index was elevated in MS patients compared with controls (P = .01). Patients with progressive MS exhibited elevated rMOG indexes compared with patients with relapsing-remitting MS (P = .04). The rMOG index was inferior to the IgG index in differentiating MS patients from controls. However, 7 of 16 patients with MS who had normal immunoglobulin G indexes had an elevated rMOG index. The rMOG index did not correlate with clinical disability, other CSF markers, or radiographic outcome measures. CONCLUSIONS The rMOG index, a marker of intrathecal MOG antibody production, may provide complementary information to routine CSF testing in the diagnosis of MS. Furthermore, intrathecal anti-MOG antibody production may be more pronounced in progressive than in relapsing forms of MS.
Journal of Autoimmunity | 2008
Jeri-Anne Lyons; Michael J. Ramsbottom; Robert Mikesell; Anne H. Cross
The role of B cells and antibody in experimental autoimmune encephalomyelitis (EAE) appears to differ based on the identity and state (protein vs. encephalitogenic peptide) of the inducing antigen and the strain of mouse utilized. The involvement of B cells in the induction of EAE by peptides of proteolipid protein (PLP) in BALB/c mice was investigated. Wild-type and B cell-deficient (B cell-/-) mice on the BALB/c background were immunized with overlapping PLP peptides, and the disease course was followed. Although incidence and onset of PLP(180-199)-induced EAE was similar in WT and B cell-/- mice, the clinical course was more severe in B cell-/- mice. During acute disease, proliferation and interferon-gamma production by lymphoid cells from both strains were similar and were elicited predominantly in response to the immunizing antigen. However, during chronic disease lymphoid cells isolated from B cell-/- mice proliferated to a greater extent and produced more interferon-gamma in response to the overlapping peptide PLP185-206 and to the smaller internal peptide PLP185-199 than did WT mice. These data suggest that B cells regulate PLP-induced EAE in BALB/c mice through control of epitope spreading.
Multiple Sclerosis Journal – Experimental, Translational and Clinical | 2015
Enrique Alvarez; Laura Piccio; Robert Mikesell; Kathryn Trinkaus; Becky J. Parks; Robert T. Naismith; Anne H. Cross
Background B-cell depleting drugs show promise for treating multiple sclerosis. Objective We sought predictors of optimal response to rituximab, a B-cell depleting antibody, to help guide therapy selection. Methods We performed a post hoc study of 30 relapsing multiple sclerosis patients with breakthrough disease while on beta-interferon or glatiramer acetate who were treated with add-on rituximab. Standardized neurologic examinations, brain magnetic resonance imaging, and cerebrospinal fluid were obtained before and after rituximab. Tissue biomarkers were measured. Optimal responders were defined as having no evidence of disease activity. Results At baseline, optimal responders with no evidence of disease activity had higher IgG indices (P = 0.041), and higher CXCL13 indices ((cerebrospinal fluid CXCL13/serum CXCL13)/albumin index; P = 0.024), more contrast enhancing lesions (P = 0.002), better 25 foot timed walk (P = 0.001), and Expanded Disability Status Scale (P = 0.002). Rituximab treatment led to reduced cerebrospinal fluid biomarkers of tissue destruction: myelin basic protein (P = 0.046), neurofilament light chain (P < 0.001), and of inflammation (CXCL13 index; P = 0.042). Conclusions Multiple sclerosis patients with optimal response to rituximab had higher cerebrospinal fluid IgG and CXCL13 indices, more gadolinium-enhancing lesions, and less disability at baseline. Rituximab treatment led to decreased markers of inflammation and tissue damage. If validated, these results will help identify multiple sclerosis patients who will respond optimally to B-cell depletion.
European Journal of Immunology | 2013
Laura Piccio; Claudia Cantoni; Jacob G. Henderson; Daniel Hawiger; Michael J. Ramsbottom; Robert Mikesell; Jiyoon Ryu; Chyi-Song Hsieh; Viviana Cremasco; Wesley Haynes; Lily Q. Dong; Lawrence Chan; Daniela Galimberti; Anne H. Cross
Multiple sclerosis (MS) is a presumed autoimmune disease directed against central nervous system (CNS) myelin, in which diet and obesity are implicated as risk factors. Immune responses can be influenced by molecules produced by fat cells, called adipokines. Adiponectin is an adipokine with anti‐inflammatory effects. We tested the hypothesis that adiponectin has a protective role in the EAE model for MS, that can be induced by immunization with myelin antigens or transfer of myelin‐specific T lymphocytes. Adiponectin deficient (ADPKO) mice developed worse EAE with greater CNS inflammation, demyelination, and axon injury. Lymphocytes from myelin‐immunized ADPKO mice proliferated more, produced higher amounts of IFN‐γ, IL‐17, TNF‐α, IL‐6, and transferred more severe EAE than wild type (WT) lymphocytes. At EAE peak, the spleen and CNS of ADPKO had fewer regulatory T (Treg) cells than WT mice and during EAE recovery, Foxp3, IL‐10 and TGF‐β expression levels in the CNS were reduced in ADPKO compared with WT mice. Treatment with globular adiponectin in vivo ameliorated EAE, and was associated with an increase in Treg cells. These data indicate that adiponectin is an important regulator of T‐cell functions during EAE, suggesting a new avenue of investigation for MS treatment.
bioRxiv | 2018
Yuetiva Deming; Fabia Filipello; Francesca Cignarella; Simon Hsu; Robert Mikesell; Zeran Li; Jorge L. Del-Aguila; Umber Dube; Fabiana G. Farias; Joseph P. Bradley; Claudia Cantoni; Bruno A. Benitez; John Budde; Laura Ibanez; Maria V. Fernandez; Kaj Blennow; Bengt Nellgård; Henrik Zetterberg; Amanda Heslegrave; Per M Johansson; Johan Svensson; Alberto Lleó; Daniel Alcolea; Jordi Clarimón; Lorena Rami; José Luis Molinuevo; Marc Suarez-Calvet; Estrella Morenas-Rodriguez; Gernot Kleinberger; Michael Ewers
Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) levels in the cerebrospinal fluid (CSF) have been associated with Alzheimer disease (AD) status. TREM2 plays a critical role in microglial activation, survival, and phagocytosis; however, the pathophysiological role of sTREM2 in AD is not well understood. Understanding the role of sTREM2 in AD may help reveal biological mechanisms underlying AD and identify novel therapeutic targets. We performed a genome-wide association study (GWAS) to identify genetic modifiers of CSF sTREM2 levels. Common variants in the membrane-spanning 4-domains subfamily A (MS4A) gene region were associated with higher CSF sTREM2 levels (rs1582763; P = 1.15×10−15) and replicated in independent datasets. The variants associated with increased levels of sTREM2 are also associated with reduced AD risk and delayed age-at-onset. Rs1582763 influences expression of MS4A4A and MS4A6A in multiple tissues, suggesting that one or both of these genes are important for regulating sTREM2. MS4A genes encode transmembrane proteins that may play a role in intracellular protein trafficking in microglia. We used human macrophages to begin to test the relationship between MS4A4A and TREM2 and found that they co-localize intracellularly and that antibody-mediated targeting of MS4A4A reduces sTREM2. Thus, genetic, molecular, and cellular findings suggest that MS4A4A regulates sTREM2. These findings also provide a mechanistic explanation of the original GWAS signal in the MS4A locus for AD risk and indicate that TREM2 is involved in sporadic AD risk in general, not only in TREM2 risk-variant carriers.