Robert Musiol
University of Silesia in Katowice
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert Musiol.
Current Medicinal Chemistry | 2010
Robert Musiol; Maciej Serda; S. Hensel-Bielowka; Jaroslaw Polanski
Although the assortment of antifungal drugs is broad, the most commonly used agents have major drawbacks. Toxicity, serious side effects or the emergence of drug resistance are amongst them. New drugs and drug candidates under clinical trials do not guarantee better pharmacological parameters. These new medicines may appear effective; however; they may cause serious side effects. This current review is focused on the recent findings in the design of quinoline based antifungal agents. This field seems to be especially interesting as 8-hydroxyquinoline and its metal complexes have been well known as antifungals for years. Structural similarities between quinoline based antifungals and allylamines or homoallylamines, e.g. terbinafine is another interesting fact. Quinoline can be identified in a number of synthetic and natural antifungals, which indicates natures preference for this fragment and identifying it as one of the so-called privileged structures. We have discussed new trends in the design of quinolines with antifungal properties, their possible targets and the structure activity relationships within the antifungal series developed.
Bioorganic & Medicinal Chemistry | 2008
Robert Musiol; D. Tabak; Halina Niedbala; Barbara Podeszwa; Josef Jampilek; Katarina Kralova; Jiri Dohnal; Jacek Finster; Agnieszka Mencel; Jaroslaw Polanski
Two series of amides based on quinoline scaffold were designed and synthesized in search of photosynthesis inhibitors. The compounds were tested for their photosynthesis-inhibiting activity against Spinacia oleracea L. and Chlorella vulgaris Beij. The compounds lipophilicity was determined by the RP-HPLC method. Several compounds showed biological activity similar or even higher than that of the standard (DCMU). The structure-activity relationships are discussed.
Current Medicinal Chemistry | 2012
Jaroslaw Polanski; Agata Kurczyk; Andrzej Bak; Robert Musiol
The concept of privileged structures/substructures (PS) is the idea that certain structural features produce biological effects more often than others. The PS method can be seen as an offspring of fragonomics, which is based on recent experimental measurements of protein-ligand interactions. If PS prove to be true, then chemical motives that enrich biological activity can be used when designing new drugs. However, PS remain controversial because we cannot be sure whether the excess of active structures does not result from an abundance in chemical libraries. In this review, we will focus, in particular, on the preferential organization of azanaphthalene scaffolds (AN) in drugs and natural products (NP), which are preferred by Nature in evolution. We will show that knowledge discovery in molecular databases can reveal interesting time-trends profiles for important classes of potentially privileged scaffolds. The chemical library of AN is dominated by monoaza-compounds, among which quinoline appears to be the most frequently investigated scaffold; however; more sophisticated database mining seems to indicate different PS patterns within the AN scaffold family.
Molecules | 2009
Josef Jampilek; Robert Musiol; Matus Pesko; Katarina Kralova; Marcela Vejsova; James Carroll; Aidan Coffey; Jacek Finster; D. Tabak; Halina Niedbala; Violetta Kozik; Jaroslaw Polanski; Jozef Csollei; Jiri Dohnal
In the study, a series of twelve ring-substituted 4-hydroxy-1H-quinolin-2-one derivatives were prepared. The procedures for synthesis of the compounds are presented. The compounds were analyzed using RP-HPLC to determine lipophilicity and tested for their photosynthesis-inhibiting activity using spinach (Spinacia oleracea L.) chloroplasts. All the synthesized compounds were also evaluated for antifungal activity using in vitro screening with eight fungal strains. For all the compounds, the relationships between the lipophilicity and the chemical structure of the studied compounds are discussed, as well as their structure-activity relationships (SAR).
Bioorganic & Medicinal Chemistry | 2012
Wioleta Cieslik; Robert Musiol; Jacek E. Nycz; Josef Jampilek; Marcela Vejsova; M. Wolff; B. Machura; Jaroslaw Polanski
Series of new ring-substituted styrylquinolines and two oxorhenium complexes were prepared and characterized. The compounds were analyzed using RP-HPLC to determine lipophilicity. Primary in vitro screening of the synthesized compounds was performed against fungal and bacterial strains. Some compounds were active against bacteria at micromolar level and against fungi at submicromolar level. Compounds 5,7-dichloro-2-[2-(2-ethoxyphenyl)vinyl]quinolin-8-ol expressed excellent antifungal activity comparable with or higher than the standard fluconazole as well as antibacterial activity against Staphylococcus strains comparable with or higher than the standards bacitracin, penicillin and ciprofloxacin. The structure-activity relationships are discussed.
Molecules | 2010
Robert Musiol; Josef Jampilek; Jacek E. Nycz; Matus Pesko; James Carroll; Katarina Kralova; Marcela Vejsova; Jim O'Mahony; Aidan Coffey; Anna Mrozek; Jaroslaw Polanski
In this study, a series of fourteen ring-substituted 8-hydroxyquinoline derivatives were prepared. The synthesis procedures are presented. The compounds were analyzed using RP-HPLC to determine lipophilicity. They were tested for their activity related to inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. Primary in vitro screening of the synthesized compounds was also performed against four mycobacterial strains and against eight fungal strains. Several compounds showed biological activity comparable with or higher than the standards isoniazid or fluconazole. For all the compounds, the relationships between the lipophilicity and the chemical structure of the studied compounds are discussed.
Molecules | 2009
Josef Jampilek; Robert Musiol; Jacek Finster; Matus Pesko; James Carroll; Katarina Kralova; Marcela Vejsova; Jim O'Mahony; Aidan Coffey; Jiri Dohnal; Jaroslaw Polanski
In this study, series of ring-substituted 2-styrylquinazolin-4(3H)-one and 4-chloro-2-styrylquinazoline derivatives were prepared. The syntheses of the discussed compounds are presented. The compounds were analyzed by RP-HPLC to determine lipophilicity. They were tested for their inhibitory activity on photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. Primary in vitro screening of the synthesized compounds was also performed against four mycobacterial strains and against eight fungal strains. Several compounds showed biological activity comparable with or higher than that of the standard isoniazid. It was found that the electronic properties of the R substituent, and not the total lipophilicity of the compound, were decisive for the photosynthesis-inhibiting activity of tested compounds.
Bioorganic & Medicinal Chemistry | 2010
Anna Mrozek-Wilczkiewicz; Danuta S. Kalinowski; Robert Musiol; Jacek Finster; Agnieszka Szurko; Katarzyna Serafin; Magdalena Knas; Sishir K. Kamalapuram; Zaklina Kovacevic; Josef Jampilek; Alicja Ratuszna; Joanna Rzeszowska-Wolny; Des R. Richardson; Jaroslaw Polanski
A group of styrylazanaphthalenes and azanaphthalenediones were synthesized and tested for their anti-proliferative activity. Most of the compounds were obtained with the use of microwave-assisted synthesis. The lipophilicity of the compounds was measured by RP-HPLC and their anti-proliferative activity was assayed against the human SK-N-MC neuroepithelioma and HCT116 human colon carcinoma cell lines. Active compounds were also tested in clonogenity and comet assays. Several quinazolinone and styrylquinazoline analogues were found to have markedly greater anti-proliferative activity than desferoxamine and cis-platin.
Current Pharmaceutical Design | 2011
Robert Musiol; Maciej Serda; Jaroslaw Polanski
Photodynamic therapy (PDT), the concept of cancer treatment through the selective uptake of a light-sensitive agent followed by exposure to a specific wavelength, is limited by the transport of a photosensitizer (PS) to the tumor tissue. Porphyrin, an important PS class, can be used in PDT in the form of its prodrug molecule 5-aminolevulinic acid (5-ALA). Unfortunately, its poor pharmacokinetic properties make this compound difficult to administer. Two different methods for eliminating this problem can be distinguished. The first approach is to play with its formulation in order to improve the drugs applicability. The second approach, which is to find possible 5- ALA prodrugs, is an example of the double-prodrug method, a strategy often used in modern drug design. In this approach, the biological mechanisms in a long biosynthetic pathway involving several steps must be completed before the active drug appears. Recently, an idea of enhancing PDT sensitization using the so-called iron chelators seemed to increase the accumulation of protoporphyrin in cells. At the same time, iron chelators can destroy tumor cells by producing active oxygen after the formation of an active drug by chelating iron in the cancer cells. Thus, in the latter case, the therapy resembles a prodrug strategy. The mechanism can be explained by the Fenton reaction. Vitamin C is another example of a potential anticancer agent of this type.
Molecules | 2012
Maciej Serda; Anna Mrozek-Wilczkiewicz; Josef Jampilek; Matus Pesko; Katarina Kralova; Marcela Vejsova; Robert Musiol; Alicja Ratuszna; Jaroslaw Polanski
Two series of thiosemicarbazone-based iron chelators (twenty-seven compounds) were designed and synthesized using a microwave-assisted approach. Quinoline and halogenated phenyl were selected as parent scaffolds on the basis of a similarity search. The lipophilicity of the synthesized compounds was measured using HPLC and then calculated. Primary in vitro screening of the synthesized compounds was performed against eight pathogenic fungal strains. Only a few compounds showed moderate activity against fungi, and (E)-2-(quinolin-2-ylvinyl)-N,N-dimethylhydrazine-carbothioamide appeared to be more effective than fluconazole against most of the fungal strains tested. Antiproliferative activity was measured using a human colon cancer cell line (HCT-116). Several of the tested compounds showed submicromolar antiproliferative activity. Compounds were also tested for their activity related to the inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. The structure-activity relationships are discussed for all of the compounds.