Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert N. Kelsh is active.

Publication


Featured researches published by Robert N. Kelsh.


Nature Neuroscience | 2006

In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development

Brandon B Kirby; Norio Takada; Andrew J. Latimer; Jimann Shin; Thomas J. Carney; Robert N. Kelsh; Bruce Appel

Myelinating oligodendrocytes arise from migratory and proliferative oligodendrocyte progenitor cells (OPCs). Complete myelination requires that oligodendrocytes be uniformly distributed and form numerous, periodically spaced membrane sheaths along the entire length of target axons. Mechanisms that determine spacing of oligodendrocytes and their myelinating processes are not known. Using in vivo time-lapse confocal microscopy, we show that zebrafish OPCs continuously extend and retract numerous filopodium-like processes as they migrate and settle into their final positions. Process remodeling and migration paths are highly variable and seem to be influenced by contact with neighboring OPCs. After laser ablation of oligodendrocyte-lineage cells, nearby OPCs divide more frequently, orient processes toward the ablated cells and migrate to fill the unoccupied space. Thus, process activity before axon wrapping might serve as a surveillance mechanism by which OPCs determine the presence or absence of nearby oligodendrocyte-lineage cells, facilitating uniform spacing of oligodendrocytes and complete myelination.


Development | 2005

Hedgehog signaling is required for cranial neural crest morphogenesis and chondrogenesis at the midline in the zebrafish skull.

Naoyuki Wada; Yashar Javidan; Sarah Nelson; Thomas J. Carney; Robert N. Kelsh; Thomas F. Schilling

Neural crest cells that form the vertebrate head skeleton migrate and interact with surrounding tissues to shape the skull, and defects in these processes underlie many human craniofacial syndromes. Signals at the midline play a crucial role in the development of the anterior neurocranium, which forms the ventral braincase and palate, and here we explore the role of Hedgehog (Hh) signaling in this process. Using sox10:egfp transgenics to follow neural crest cell movements in the living embryo, and vital dye labeling to generate a fate map, we show that distinct populations of neural crest form the two main cartilage elements of the larval anterior neurocranium: the paired trabeculae and the midline ethmoid. By analyzing zebrafish mutants that disrupt sonic hedgehog (shh) expression, we demonstrate that shh is required to specify the movements of progenitors of these elements at the midline, and to induce them to form cartilage. Treatments with cyclopamine, to block Hh signaling at different stages, suggest that although requirements in morphogenesis occur during neural crest migration beneath the brain, requirements in chondrogenesis occur later, as cells form separate trabecular and ethmoid condensations. Cell transplantations indicate that these also reflect different sources of Shh, one from the ventral neural tube that controls trabecular morphogenesis and one from the oral ectoderm that promotes chondrogenesis. Our results suggest a novel role for Shh in the movements of neural crest cells at the midline, as well as in their differentiation into cartilage, and help to explain why both skeletal fusions and palatal clefting are associated with the loss of Hh signaling in holoprosencephalic humans.


Seminars in Cell & Developmental Biology | 2009

Stripes and belly-spots – a review of pigment cell morphogenesis in vertebrates

Robert N. Kelsh; Melissa L. Harris; Sarah Colanesi; Carol A. Erickson

Pigment patterns in the integument have long-attracted attention from both scientists and non-scientists alike since their natural attractiveness combines with their excellence as models for the general problem of pattern formation. Pigment cells are formed from the neural crest and must migrate to reach their final locations. In this review, we focus on our current understanding of mechanisms underlying the control of pigment cell migration and patterning in diverse vertebrates. The model systems discussed here - chick, mouse, and zebrafish - each provide unique insights into the major morphogenetic events driving pigment pattern formation. In birds and mammals, melanoblasts must be specified before they can migrate on the dorsolateral pathway. Transmembrane receptors involved in guiding them onto this route include EphB2 and Ednrb2 in chick, and Kit in mouse. Terminal migration depends, in part, upon extracellular matrix reorganization by ADAMTS20. Invasion of the ectoderm, especially into the feather germ and hair follicles, requires specific signals that are beginning to be characterized. We summarize our current understanding of the mechanisms regulating melanoblast number and organization in the epidermis. We note the apparent differences in pigment pattern formation in poikilothermic vertebrates when compared with birds and mammals. With more pigment cell types, migration pathways are more complex and largely unexplored; nevertheless, a role for Kit signaling in melanophore migration is clear and indicates that at least some patterning mechanisms may be highly conserved. We summarize the multiple factors thought to contribute to zebrafish embryonic pigment pattern formation, highlighting a recent study identifying Sdf1a as one factor crucial for regulation of melanophore positioning. Finally, we discuss the mechanisms generating a second, metamorphic pigment pattern in adult fish, emphasizing recent studies strengthening the evidence that undifferentiated progenitor cells play a major role in generating adult pigment cells.


Development | 2003

Transcriptional regulation of mitfa accounts for the sox10 requirement in zebrafish melanophore development

Stone Elworthy; James A. Lister; Tom J. Carney; David W. Raible; Robert N. Kelsh

The transcription factor Sox10 is required for the specification, migration and survival of all nonectomesenchymal neural crest derivatives including melanophores. sox10-/- zebrafish lack expression of the transcription factor mitfa, which itself is required for melanophore development. We demonstrate that the zebrafish mitfa promoter has sox10 binding sites necessary for activity in vitro, consistent with studies using mammalian cell cultures that have shown that Sox10 directly regulates Mitf expression. In addition, we demonstrate that these sites are necessary for promoter activity in vivo. We show that reintroduction of mitfa expression in neural crest cells can rescue melanophore development in sox10-/- embryos. This rescue of melanophores in sox10-/- embryos is quantitatively indistinguishable from rescue in mitfa-/- embryos. These findings show that the essential function of sox10 in melanophore development is limited to transcriptional regulation of mitfa. We propose that the dominant melanophore phenotype in Waardenburg syndrome IV individuals with SOX10 mutations is likely to result from failure to activate MITF in the normal number of melanoblasts.


PLOS Genetics | 2008

Leukocyte tyrosine kinase functions in pigment cell development.

Susana S. Lopes; Xueyan Y. Yang; Jeanette Muller; Thomas J. Carney; Anthony R. McAdow; Gerd-Jörg Rauch; Arie S. Jacoby; Laurence D. Hurst; Mariana Delfino-Machin; Pascal Haffter; Robert Geisler; Stephen L. Johnson; Andrew Ward; Robert N. Kelsh

A fundamental problem in developmental biology concerns how multipotent precursors choose specific fates. Neural crest cells (NCCs) are multipotent, yet the mechanisms driving specific fate choices remain incompletely understood. Sox10 is required for specification of neural cells and melanocytes from NCCs. Like sox10 mutants, zebrafish shady mutants lack iridophores; we have proposed that sox10 and shady are required for iridophore specification from NCCs. We show using diverse approaches that shady encodes zebrafish leukocyte tyrosine kinase (Ltk). Cell transplantation studies show that Ltk acts cell-autonomously within the iridophore lineage. Consistent with this, ltk is expressed in a subset of NCCs, before becoming restricted to the iridophore lineage. Marker analysis reveals a primary defect in iridophore specification in ltk mutants. We saw no evidence for a fate-shift of neural crest cells into other pigment cell fates and some NCCs were subsequently lost by apoptosis. These features are also characteristic of the neural crest cell phenotype in sox10 mutants, leading us to examine iridophores in sox10 mutants. As expected, sox10 mutants largely lacked iridophore markers at late stages. In addition, sox10 mutants unexpectedly showed more ltk-expressing cells than wild-type siblings. These cells remained in a premigratory position and expressed sox10 but not the earliest neural crest markers and may represent multipotent, but partially-restricted, progenitors. In summary, we have discovered a novel signalling pathway in NCC development and demonstrate fate specification of iridophores as the first identified role for Ltk.


Mechanisms of Development | 2000

Expression of zebrafish fkd6 in neural crest-derived glia

Robert N. Kelsh; Kirsten A. Dutton; Joanne Medlin; Judith S. Eisen

The zebrafish fkd6 gene is a marker for premigratory neural crest. In this study, we analyze later expression in putative glia of the peripheral nervous system. Prior to neural crest migration, fkd6 expression is downregulated in crest cells. Subsequently, expression appears initially in loose clusters of cells in positions corresponding to cranial ganglia. Double labelling with a neuronal marker shows that fkd6-expressing cells are not differentiated neurones and generally lie peripheral to neurones in ganglia. Later, expression appears associated with the posterior lateral line and other cranial nerves. For the posterior lateral line nerve, we show that fkd6-labeling extends caudally along this nerve in tight correlation with lateral line primordium migration and axon elongation. Expression in colourless mutant embryos is consistent with these cells being satellite glia and Schwann cells.


BioEssays | 2008

The origin and evolution of the neural crest

Philip C. J. Donoghue; Anthony Graham; Robert N. Kelsh

Many of the features that distinguish the vertebrates from other chordates are derived from the neural crest, and it has long been argued that the emergence of this multipotent embryonic population was a key innovation underpinning vertebrate evolution. More recently, however, a number of studies have suggested that the evolution of the neural crest was less sudden than previously believed. This has exposed the fact that neural crest, as evidenced by its repertoire of derivative cell types, has evolved through vertebrate evolution. In this light, attempts to derive a typological definition of neural crest, in terms of molecular signatures or networks, are unfounded. We propose a less restrictive, embryological definition of this cell type that facilitates, rather than precludes, investigating the evolution of neural crest. While the evolutionary origin of neural crest has attracted much attention, its subsequent evolution has received almost no attention and yet it is more readily open to experimental investigation and has greater relevance to understanding vertebrate evolution. Finally, we provide a brief outline of how the evolutionary emergence of neural crest potentiality may have proceeded, and how it may be investigated. BioEssays 30:530–541, 2008.


Development | 2004

Roles for GFRα1 receptors in zebrafish enteric nervous system development

Iain T. Shepherd; Jacy Pietsch; Stone Elworthy; Robert N. Kelsh; David W. Raible

Components of the zebrafish GDNF receptor complex are expressed very early in the development of enteric nervous system precursors, and are already present as these cells begin to enter the gut and migrate caudally along its length. Both gfra1a and gfra1b as well as ret are expressed at this time, while gfra2 expression, the receptor component that binds the GDNF-related ligand neurturin, is not detected until the precursors have migrated along the gut. Gfra genes are also expressed in regions of the zebrafish brain and peripheral ganglia, expression domains conserved with other species. Enteric neurons are eliminated after injection with antisense morpholino oligonucleotides against ret or against both Gfra1 orthologs, but are not affected by antisense oligonucleotides against gfra2. Blocking GDNF signaling prevents migration of enteric neuron precursors, which remain positioned at the anterior end of the gut. Phenotypes induced by injection of antisense morpholinos against both Gfra orthologs can be rescued by introduction of mRNA for gfra1a or for gfra2, suggesting that GFRα1 and GFRα2 are functionally equivalent.


Developmental Dynamics | 2007

The proliferating field of neural crest stem cells

Mariana Delfino-Machin; Thomas R. Chipperfield; Frederico S. L. M. Rodrigues; Robert N. Kelsh

Neural crest stem cells were first isolated from early embryonic neural crest in the early 1990s, but in the past 5 years, there has been a burst of discoveries of neural crest‐derived stem cells from diverse locations. Here, we summarize these data, highlighting the characteristics of each stem cell type. These cells vary widely in the markers they express and the variety of cell types they appear to generate. They occupy diverse locations, but in some cases multiple stem cell types apparently occupy physically proximate niches. To date, few molecular similarities can be identified between these stem cells, although a systematic comparison is required. We note other issues worthy of attention, including aspects of the in vivo behavior of these stem cells, their niches, and their lineage relationships. Together, analysis of these issues will clarify this expanding, but still young, field and contribute to exploration of the important therapeutic potential of these cells. Developmental Dynamics 236:3242–3254, 2007.


Mechanisms of Development | 2005

Phox2b function in the enteric nervous system is conserved in zebrafish and is sox10-dependent

Stone Elworthy; Jorge P. Pinto; Anna Pettifer; M. Leonor Cancela; Robert N. Kelsh

Zebrafish lacking functional sox10 have defects in non-ectomesenchymal neural crest derivatives including the enteric nervous system (ENS) and as such provide an animal model for human Waardenburg Syndrome IV. Here, we characterize zebrafish phox2b as a functionally conserved marker of the developing ENS. We show that morpholino-mediated knockdown of Phox2b generates fish modeling Hirschsprung disease. Using markers, including phox2b, we investigate the ontogeny of the sox10 ENS phenotype. As previously shown for melanophore development, ENS progenitor fate specification fails in these mutant fish. However, in addition, we trace back the sox10 mutant ENS defect to an even earlier time point, finding that most neural crest cells fail to migrate ventrally to the gut primordium.

Collaboration


Dive into the Robert N. Kelsh's collaboration.

Top Co-Authors

Avatar

Heinz Arnheiter

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew E. Aplin

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Jorge P. Pinto

University of the Algarve

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. Conceição

University of the Algarve

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge